ALGEBRAIC INDEPENDENCE OF VALUES OF EXPONENTIAL TYPE POWER SERIES (Analytic Number Theory : Number Theory through Approximation and Asymptotics)
スポンサーリンク
概要
著者
-
塩川 宇賢
慶應義塾大学理工学部
-
塩川 宇賢
慶應義塾大学
-
Elsner C.
FHDW Hanover, U. Applied Sci.
-
Nesterenko Yu.
Moscow State U.
関連論文
- Algebraic relations and asymptotic formulas for Fibonacci reciprocal sums (解析的整数論とその周辺--RIMS研究集会報告集)
- Algebraic independence results for Ramanujan $q$-series (New Aspects of Analytic Number Theory)
- β-Transformation and Related Topics (エルゴ-ド理論とその周辺)
- $$-number systems and algebraic independence (Analytic Number Theory and Surrounding Areas)
- Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers (Number Theory and its Applications)
- ある種の正規数(解析数論:最近の発展)
- 指数関数の有理点での値の有理近似について
- 超越数論におけるMahlerの方法(Fourier Analysis on Arithmetical Sequences)
- Some Ergodic Properties of a Complex Continued Fraction Algorithm (数論的関数の特性)
- On the Sum of Digits of Prime Numbers (数論と調和解析)
- On a Problem in Additive Number Theory (解析的整数論)
- ALGEBRAIC INDEPENDENCE OF VALUES OF EXPONENTIAL TYPE POWER SERIES (Analytic Number Theory : Number Theory through Approximation and Asymptotics)