On the dependence of error performance of spatially coupled LDPC codes on their design parameters
スポンサーリンク
概要
- 論文の詳細を見る
Spatially coupled (SC) low-density parity-check (LDPC) codes are denned by bipartite graphs that are obtained by assembling prototype graphs. The combination and connection of prototype graphs are designated by specifying some parameters, and Kudekar et al. showed that BP threshold of the ensemble of SC LDPC codes agrees with MAP threshold of the ensemble of regular LDPC codes when those parameters are grown up so that the code length tends to infinity. When we design SC LDPC codes with practical code length, however, it is not clear how to set those parameters to enhance the performance of SC LDPC codes. In this paper, we provide the result of numerical experiments that suggest the dependence of error performance of SC LDPC codes over BEC on their design parameters.
- 一般社団法人電子情報通信学会の論文
- 2012-07-12
著者
-
Shibuya Tomoharu
Department Of Communications And Integrated Systems Tokyo Institute Of Technology
-
Ihara Hiroyuki
Graduate School of Science and Technology, Sophia University
関連論文
- Encoding of Linear Codes Based on the Rearrangement of Block-Triangularized Parity-Check Matrices
- On Generalized Hamming Weights of Codes Constructed on Affine Algebraic Varieties (Special Section on Information Theory and Its Applications)
- An Improved Bound for the Dimension of Subfield Subcodes
- Multi-edge type LDPC code ensembles with exponentially few codewords of linear small weight (情報理論)
- A note on analytical solution of covariance evolution for regular LDPC codes (情報理論)
- On the Performance of Algebraic Geometric Codes
- A Lower Bound for Generalized Hamming Weights and a Condition for t-th Rank MDS
- On the size of circulant matrices for which reversible codes exist (ワイドバンドシステム)
- Construction of Cyclic Codes Suitable for Iterative Decoding via Generating Idempotents
- Characterization of Factor Graph by Mooij's Sufficient Condition for Convergence of the Sum-Product Algorithm
- Sufficient conditions for convergence of the sum-product decoding (情報理論)
- On the size of circulant matrices for which reversible codes exist (情報処理)
- Sufficient conditions for convergence of the sum-product decoding (情報セキュリティ)
- On the size of circulant matrices for which reversible codes exist (情報セキュリティ)
- Sufficient conditions for convergence of the sum-product decoding (ワイドバンドシステム)
- Ring Theoretic Approach to Reversible Codes Based on Circulant Matrices
- On the dependence of error performance of spatially coupled LDPC codes on their design parameters
- On the Dependence of Error Performance of Spatially Coupled LDPC Codes on Their Design Parameters