Periodicities of T-systems and Y-systems, Dilogarithm Identities, and Cluster Algebras I: Type ${B}_r$
スポンサーリンク
概要
- 論文の詳細を見る
- 2013-04-00
著者
-
Kuniba Atsuo
Institute Of Physics College Of Arts And Sciences University Of Tokyo
-
Inoue Rei
Faculty Of Pharmaceutical Sciences Suzuka University Of Medical Science
-
Nakanishi Tomoki
Graduate School Of Mathematics Nagoya University
-
KELLER Bernhard
Universite Paris Diderot
-
IYAMA Osamu
Graduate School of Mathematics, Nagoya University
関連論文
- Free Energies and Critical Exponents of the A^_1,B^_n,C^_n and D^_n Face Models
- The Gordon-Generalization Hierarchy of Exactly Solvable IRF Models
- Virasoro Algebra,von Neumann Algebra and Critical Eight-Vertex SOS Models
- Difference equations and cluster algebras I : Poisson bracket for integrable difference equations (Infinite Analysis 2010 Developments in Quantum Integrable Systems)
- The Quantum Nonlinear Schrodinger Model;Gelfand-Levitan Equation and Classical Soliton
- Inhomogeneous Eight-Vertex SOS Model and Solvable IRF Hierarchies
- Exactly Solvable IRF Models.V.A Further New Hierarchy
- Exactly Solvable IRF Models.IV.Generalized Rogers-Remanujan Identities and a Solvable Hierarchy
- Exactly Sovable IRF Models.III.A New Hierarchy of Solvable Models
- Exactly Solvable IRF Models.II.S_N-Generalizations
- Exactly Solvable IRF Models.I.A Three-State Model
- The Quantum Nonlinear Schrodinger Model;Conserved Quantities
- Tropical Jacobian and the generic fiber of the ultra-discrete periodic Toda lattice are isomorphic (Expansion of Integrable Systems)
- Periodicities of T-systems and Y-systems, Dilogarithm Identities, and Cluster Algebras I\hspace{-.1em}I : Types ${C}_r$, ${F}_4$, and ${G}_2$
- Periodicities of T-systems and Y-systems, Dilogarithm Identities, and Cluster Algebras I: Type ${B}_r$