A Pfaffian analogue of the Hankel determinants and the Selberg integrals (Topics in Combinatorial Representation Theory)
スポンサーリンク
概要
著者
-
Zeng Jiang
Institut Camille Jordan Universite Claude Bernard
-
Zeng Jiang
Institut Camille Jordan Universite Claude Bernard Lyon 1
-
石川 雅雄
琉球大学教育学部
関連論文
- A $q$-analogue of Catalan Hankel determinants (New Trends in Combinatorial Representation Theory)
- EULER-MAHONIAN STATISTICS ON ORDERED PARTITIONS AND STEINGRIMSSON'S CONJECTURE : A SURVEY (Combinatorial Representation Theory and Related Topics)
- Self-complementary な平面分割の個数(組合せ論とその周辺の研究 : 可換環論・代数幾何・Lie環の表現論と半順序集合の相互関係)
- A Pfaffian analogue of the Hankel determinants and the Selberg integrals (Topics in Combinatorial Representation Theory)
- A generalization of the Mehta-Wang determinant and the Askey-Wilson polynomials (Topics in Combinatorial Representation Theory)
- Hankel Pfaffian とSelberg 積分 (表現論と非可換調和解析の展望)