ゲージ理論を用いた位相不変量の非可換変形
スポンサーリンク
概要
- 論文の詳細を見る
Solitons in gauge theories in noncommutative spaces had been constructed by using several methods. However we did not have noncommutative soliton solutions by using deformation quantization from solitons in commutative soliton solutions, and we did not have researches for such solutions. In this article, we report them for the case of instantons that are solitons in a 4-dimensional gauge theory. Deformation quantization of instanton solutions for U(N) (N > 1) gauge theory in R^4 is constructed and it is shown that their instanton numbers are preserved under the deformation quantization. We also derive the one-to-one correspondence between the instantons and ADHM data. This article is written as a report for summarizing works supported by the KAKENHI No.20740049 (Grant-in-Aid for Young Scientists (B)).
- 2011-12-16
著者
関連論文
- 非可換ゲージ理論と位相不変量 : U(n)ゲージ理論のインスタントン数(場の量子論 2002,研究会報告)
- 30aSF-5 ユークリッド空間上のインスタントンの非可換変形(30aSF 量子力学,非可換時空,ブレーン,重力,素粒子論領域)
- 24pSG-6 モノポールモジュライ空間に拡張されたVafa-Witten理論
- 28P-YQ-2 Seiberg-Witten Invariants と Donaldson Invariants
- Noncommutative Deformation Invariant Quantum Field Theory
- サイバーグ・ウィッテンモノポール側から見た N=2 超対称ゲージ理論(弦理論と場の量子論における新たな進展,基礎物理学研究所2006年度前期研究会)
- N.C. Cohomological Field Theory and Matrix model
- N=4 Topological Twisted Yang-Mills Theory and Seiberg-Witten invariants
- ゲージ理論を用いた位相不変量の非可換変形
- N.C.Supersymmetric Gauge Theories and their Unified perspective
- 国際会議「Supersymmetry in Integrable Systems-SIS'11」及び「UK-Japan winter school2012」の報告