ガウス過程に対する経路積分 : 時間分割近似法による経路空間上の解析として (経路積分と超局所解析の入門)
スポンサーリンク
概要
著者
関連論文
- Smooth functional derivatives in Feynman path integrals by time slicing approximation: 小松彦三郎先生の古希を記念して (超函数と線型微分方程式2006 数学史とアルゴリズム--RIMS研究集会報告集)
- ガウス過程に対する経路積分 : 時間分割近似法による経路空間上の解析として (経路積分と超局所解析の入門)
- 熊ノ郷-谷口の定理の簡単な証明について (偏微分方程式の解の構造の研究)
- ON THE CONVERGENCE OF FEYNMAN PATH INTEGRALS THROUGH BROKEN LINES (Microlocal Analysis of the Schrodinger Equation and Related Topics)
- A HAMILTONIAN PATH INTEGRAL FOR A DEGENERATE PARABOLIC PSEUDO-DIFFERENTIAL OPERATOR
- A HAMILTONIAN PATH INTEGRAL FOR A DEGENERATE PARABOLIC PSEUDO-DIFFERENTIAL OPERATOR(The Functional and Algebraic Method for Differential Equations)
- Phase Space Feynman Path Integrals : as Analysis on Path Space via Piecewise (Introductory Workshop on Feynman Path Integral and Microlocal Analysis : RIMS共同研究報告集)
- Phase Space Feynman Path Integrals : Calculation Examples via Piecewise Bicharacteristic Paths (Introductory Workshop on Feynman Path Integral and Microlocal Analysis : RIMS共同研究報告集)
- Phase space path integrals as analysis on path space (Recent development of microlocal analysis and asymptotic analysis)