A Note on the Inverse Problem with LTB Universes(Astrophysics and Cosmology)
スポンサーリンク
概要
- 論文の詳細を見る
The inverse problem with Lemaitre-Tolman-Bondi (LTB) universe models is discussed. The LTB solution for the Einstein equations describes the spherically symmetric dust-filled spacetime. The LTB solution has two physical functional degrees of freedom of the radial coordinate. The inverse problem is constructing an LTB model requiring that the LTB model be consistent with selected important observational data. In this paper, we assume that the observer is at the center and consider the distance-redshift relation D_A and the redshift-space mass density μ as the selected important observational data. We give D_A and μ as functions of the redshift z. Then, we explicitly show that, for general functional forms of D_A(z) and μ(z), the regular solution does not necessarily exist in the whole redshift domain. We clarify the necessary and sufficient condition for the existence of the regular solution in terms of D_A(z) and μ(z). We also show that this condition is satisfied by the distance-redshift relation and the redshift-space mass density in ΛCDM models. Deriving regular differential equations for the inverse problem with the distance-redshift relation and the redshift-space mass density in ΛCDM models, we numerically solve them for the case (Ω_<M0>, Ω_<Λ0>)=(0.3, 0.7). A set of analytic fitting functions for the resultant LTB universe model is given. How to solve the inverse problem with the simultaneous big-bang and a given function D_A(z) for the distance-redshift relation is provided in the Appendix.
- 2010-10-25
著者
-
YOO Chul-Moon
Department of Physics, Graduate School of Science, Osaka City University
-
YOO Chul-Moon
Yukawa Institute for Theoretical Physics, Kyoto University
-
Yoo Chul-moon
Yukawa Institute For Theoretical Physics Kyoto University
関連論文
- Solving the Inverse Problem with Inhomogeneous Universes(Astrophysics and Cosmology)
- A Note on the Inverse Problem with LTB Universes(Astrophysics and Cosmology)
- Can Inhomogeneities Accelerate the Cosmic Volume Expansion?(Astrophysics and Relativity)
- Magnification Probability Distribution Functions of Standard Candles in a Clumpy Universe(Astrophysics and Cosmology)
- Analytic Model for CMB Temperature Fluctuations from Cosmic (Super-)Strings(Chapter IV: Topological defects,Cosmology-The Next Generation-)