単純化されたKeller-Segel系の爆発解について(<特集>移流項をもつ反応拡散系)
スポンサーリンク
概要
- 論文の詳細を見る
The purpose of this article is to describe some properties of solutions to the Keller-Segel model and a simplified Keller-Segel model. The Keller-Segel model was introduced to describe chemotactic aggregation of cellular slime molds, and the simplified Keller-Segel model was also introduced to describe the same phenomenon. Moreover, the simplified Keller-Segel model describes the gravitational interaction of particles. The solutions to those models represent the density of cells or particles. Then, the solutions are functions of spatial and time variables. Those systems have blowup solutions. We say that a solution blows up at finite time, if maximum value of the solution in the spatial domain tends to infinity as time variable tends to the finite time. We think that the blowup corresponds to aggregation of the cells or the particles. In this article, we describe some results about blowup solutions and the relation between those results and the biological phenomenon.
- 日本応用数理学会の論文
- 2009-12-24
著者
関連論文
- ある非線形熱方程式の爆発解について (現象解析と関数方程式の新展望)
- 単純化されたKeller-Segel系の爆発解について(移流項をもつ反応拡散系)
- 特集「移流項をもつ反応拡散系」によせて(移流項をもつ反応拡散系)
- 走化性方程式の解の挙動について (非平衡現象の解析における発展方程式理論の新展開)