双曲型混合問題がWell-Posedになるための必要条件について (函数解析的方法による偏微分方程式の研究)
スポンサーリンク
概要
著者
関連論文
- THE MICROLOCAL SMOOTHING EFFECT FOR SCHRODINGER TYPE OPERATORS IN GEVREY CLASSES (Asymptotic Analysis and Microlocal Analysis of PDE)
- Smoothing effect in Gevrey classes for Schrodinger equations (Structure of Solutions for Partial Differential Equations)
- The Cauchy problem fir hyperbolic operators of strong type
- The Cauchy problem for a class of hyperbolic operators with double characteristics(Complex Analysis and Differential Equations)
- Remarks on propagation of singularities(Microlocal Analysis of Differential Equations)
- Microlocal a priori estimates and the Cauchy problem(Microlocal Analysis and its Applications)
- Leray-Volevich SystemとGevrey Class (偏微分方程式の解の構造の研究)
- 双曲型混合問題がWell-Posedになるための必要条件について (函数解析的方法による偏微分方程式の研究)
- 1階双曲型方程式系の混合問題について (双曲型偏微分方程式の混合問題)