多時間スケールの力学系 : 幾何学的方法(<特集>力学系理論-応用数理における新しい展開)
スポンサーリンク
概要
- 論文の詳細を見る
By employing the invariant manifold theory developed by Fenichel, singularly perturbed dynamical systems are analysed with a special emphasis on then as multiple time scale systems. Exposition of the theory is guided by an example, the celebrated Hodgkin-Huxley Equatrons. More specifically, a geometric approach is given to the construction of homoclinic orbits which represent travelling pulses on nerve axons. In this approach, Exchange Lemma, together with Fenichel-normal forms, plays the decisive role.
- 日本応用数理学会の論文
- 1997-12-15
著者
関連論文
- Equadiff 99国際会議の報告(学術会合報告)
- 多時間スケールの力学系 : 幾何学的方法(力学系理論-応用数理における新しい展開)
- Interface motions driven by reaction, diffusion and convection (Variational Problems and Related Topics)
- Approximations of reaction-diffusion equations by interface equations--boundary-interior layer (反応拡散方程式系に現れる動的パターンの解析とその周辺 研究集会報告集)
- Interfaces in Activator-Inhibitor Systems : Asymptotics and Degeneracy (Viscosity Solutions of Differential Equations and Related Topics)
- Bifurcation of Transition Layers in Reaction-Diffusion Systems (International Conference on Reaction-Diffusion Systems : Theory and Applications)
- Geometric Variational Problems Arising in Reaction-Diffusion Systems (Free Boundary Problems)
- Interface Equations with Nonlocal Effects (Nonlinear Diffusive Systems : Dynamics and Asymptotics)