結晶粒界構造論の数理
スポンサーリンク
概要
- 論文の詳細を見る
The theory of grain boundary structure is reviewed from the mathematical point of view. High-order twins are mathematically introduced and developed up to the 4th order twins in the case of cubic crystals. The coincidence-site lattice, 0-lattice and DSC lattice are considered with emphasis on their algebraic aspects. Some applications of high-order twins and coincidence-site boundaries are discussed to point out these importance in the field of material sciences and industries.
- 一般社団法人日本応用数理学会の論文
- 1995-09-18
著者
関連論文
- 実験計画最適化の行列計算アルゴリズム(数値計算アルゴリズムの研究)
- Direct Criteria of H-Matrix in Special Cases〔和文〕 (偏微分方程式の数値解法とその周辺(2))
- 擬弾性緩和数理物理学的視点
- Solving Linear Differential Equation through Companion Matrix (Numerical Solution of Partial Differential Equations and Related Topics)
- Heritage of Original Matrix from its Preconditioner in the Convergent Splitting
- Physico-Mathematical Consideration of the Multi-Relaxation in Solids
- 技術開発の数理科学(インダストリアルマテリアルズ)
- 第5回年会報告(学術会合報告)
- Mathematical Theory of Thermodynamics in Multirelaxation in Solids with Discrete Relaxation Spectra
- 結晶粒界構造論の数理
- 電気回路論の擬弾性緩和解析への応用