異なる二つの楕円関数の和を母解とする楕円型平均
スポンサーリンク
概要
- 論文の詳細を見る
An improved averaging method is proposed in order to obtain a highly accurate periodic solution composed of only odd order harmonics in a strongly nonlinear dynamical system. In this method, sum of the Jacobian elliptic cosine (cn) and sine (sn) function is incorporated as the generating solution. The proposed method is applicable to relatively general nonlinear systems based on Duffing equation. The stability of the solution is analyzed by obtaining the characteristic multipliers of the variational equation. The numerical results for typical nonlinear oscillators are shown. The effectiveness of the proposed method is verified by comparing the computational results with those obtained by the shooting method.
- 2009-09-30
著者
関連論文
- 異なる二つの楕円関数の和を母解とする楕円型平均
- 102 楕円型平均法による2自由度非線形振動系の解析
- C31 多自由度非線形振動系に対する楕円型平均法について(OS13 機械における非線形振動1)
- F43 異なる二つの楕円関数の和を母解とする楕円型平均法(F4 機械力学(非線形振動・同期化現象))
- 220 陰関数に対する陽近似多項式の作成について : 最適設計への応用(GS 生産システム)