VISCOUS BEHAVIOUR OF GEOGRIDS; EXPERIMENT AND SIMULATION
スポンサーリンク
概要
- 論文の詳細を見る
The viscous properties of three types of geogrid polymer were evaluated by sustained loading tests lasting for 30 days at a load level about a half of its nominal rupture strength. The sustained loading tests were performed during otherwise monotonic loading (ML) at constant strain or load rate, unlike the conventional creep tests, in which the strain rate immediately before the start of sustained loading, which controls the creep strain rate, is not controlled or even not recorded. The following are presented in this study. The tensile rupture strength measured by ML that was started following a 30 day-long sustained loading was essentially the same as the one at the same strain rate at rupture obtained by continuous ML without any intermission of sustained loading. This fact indicates that creep is not a degrading phenomenon. Then, if free from chemical and mechanical degrading effects, the strength of a geosynthetic reinforcement (for a given strain rate at rupture) can be maintained until late in its service life. A non-linear three-component model is used to simulate the experimental results from the previous and present studies. The model can simulate very well not only the load-strain behaviour during ML with and without step changes in the strain rate and the one after sustained loading, but also the time histories of creep strain during sustained loading for short (one hour) and long (30 days) periods.
- 社団法人地盤工学会の論文
著者
-
TATSUOKA FUMIO
Department of Civil Engineering, Tokyo University of Science
-
HIRAKAWA DAIKI
Department Civil and Environmental Engineering, National Defense Academy of Japan
-
Tatsuoka Fumio
Department Of Civil Engineering Tokyo University Of Science
-
Hirakawa Daiki
Department Of Civil Engineering Tokyo University Of Science:university Of Tokyo
-
KONGKITKUL W.
Department of Civil Engineering, Tokyo University of Science
-
Kongkitkul W.
Department Of Civil Engineering Tokyo University Of Science:university Of Tokyo
関連論文
- EFFECTS OF PARTICLE CHARACTERISTICS ON THE VISCOUS PROPERTIES OF GRANULAR MATERIALS IN SHEAR
- VISCOUS PROPERTY OF LOOSE SAND IN TRIAXIAL COMPRESSION, EXTENSION AND CYCLIC LOADING
- VISCOUS BEHAVIOUR OF UNBOUND GRANULAR MATERIALS IN DIRECT SHEAR
- MODELLING AND SIMULATION OF RATE-DEPENDENT STRESS-STRAIN BEHAVIOUR OF GRANULAR MATERIALS IN SHEAR
- MODELLING OF AGEING EFFECTS ON THE ELASTO-VISCOPLASTIC BEHAVIOUR OF GEOMATERIAL
- VARIOUS VISCOSITY TYPES OF GEOMATERIALS IN SHEAR AND THEIR MATHEMATICAL EXPRESSION
- SMALL STRAIN STIFFNESS AND NON-LINEAR STRESS-STRAIN BEHAVIOUR OF CEMENT-MIXED GRAVELLY SOIL
- SMALL-STRAIN STRESS-STRAIN PROPERTIES OF EXPANDED POLYSTYRENE GEOFOAM
- STRAIN ENERGY-BASED ELASTO-VISCOPLASTIC CONSTITUTIVE MODELLING OF SAND FOR NUMERICAL SIMULATION
- VISCOUS PROPERTY OF TOYOURA SAND OVER A WIDE RANGE OF SHEAR DEFORMATION RATE AND ITS MODEL SIMULATION
- RESIDUAL DEFORMATION OF GEOSYNTHETIC-REINFORCED SAND IN PLANE STRAIN COMPRESSION AFFECTED BY VISCOUS PROPERTIES OF GEOSYNTHETIC REINFORCEMENT
- EFFECTS OF GEOSYNTHETIC REINFORCEMENT TYPE ON THE STRENGTH AND STIFFNESS OF REINFORCED SAND IN PLANE STRAIN COMPRESSION
- RATE-DEPENDENT LOAD-STRAIN BEHAVIOUR OF GEOGRID ARRANGED IN SAND UNDER PLANE STRAIN COMPRESSION
- EFFECTS OF REINFORCEMENT TYPE AND LOADING HISTORY ON THE DEFORMATION OF REINFORCED SAND IN PLANE STRAIN COMPRESSION
- VISCOUS PROPERTIES OF GRANULAR MATERIALS HAVING DIFFERENT PARTICLE SHAPES IN DIRECT SHEAR
- STRENGTH AND DEFORMATION CHARACTERISTICS OF RECYCLED CONCRETE AGGREGATE AS A BACKFILL MATERIAL
- TIME-DEPENDENT SHEAR DEFORMATION CHARACTERISTICS OF GEOMATERIALS AND THEIR SIMULATION
- Numerical Simulation of Shear Band Formation in Plane Strain Compression Tests on Sand
- RATE EFFECTS ON THE STRESS-STRAIN BEHAVIOUR OF EPS GEOFOAM
- VISCOUS BEHAVIOUR OF GEOGRIDS; EXPERIMENT AND SIMULATION
- TIME-DEPENDENT SHEAR DEFORMATION CHARACTERISTICS OF SAND AND THEIR CONSTITUTIVE MODELLING
- ディスカッション Prediction of the Performance of a Geogrid-Reinforced Slope Founded on Solid Waste
- SIMULATION OF GEOSYNTHETIC-REINFORCED PLANE STRAIN COMPRESSION (PSC) TEST OF TOYOURA SAND