全空間における熱伝導現象と平均曲率流運動
スポンサーリンク
概要
- 論文の詳細を見る
We studied the heat conduction and the mean curvature flow in the whole space. In the initial problem for the heat equation in the whole space, the solution does not necessarily converge to any fixed values as time goes to infinity, even if we consider bounded initial values. Recently it is shown that the same phenomenon occurs in the curvature flow problem and, more precisely, that the large time behavior of solutions of these two equations are equivalent under some assumptions on the initial value. To understand this fact, we introduced a technique for analyzing parabolic equations as the heat equation with some heat flux.
- 日本応用数理学会の論文
- 2009-03-25
著者
関連論文
- 全空間における熱伝導現象と平均曲率流運動
- Stability of traveling waves in curvature flows in the whole plane(Mechanism of temporal and spatial patterns in reaction-diffusion systems)
- 変形を伴う物体の衝突アニメーション
- 変形を伴う物体の衝突アニメーション
- 拘束質点系モデルによる海草の揺らぎの生成
- 拘束質点系モデルによる海草の揺らぎの生成