走行するベルトの有限要素固有値解析(機械力学,計測,自動制御)
スポンサーリンク
概要
- 論文の詳細を見る
Eigenvalue analysis is necessary to determine the stability of an axially moving belt. It is, however, complicated and difficult to calculate eigenvalues and eigenmodes analytically. In this report, a finite element eigenvalue analysis is applied to this problem. The axially moving belt is modeled as a tensioned traveling beam. The equation of motion is discretized to a finite element model using the weighted residual method, and cast in first-order form for eigenvalue analysis. Calculated complex eigenvalues are in good agreement with the exact ones for simply supported belt. Critical transport speed, at which zero eigenvalues exist, can be determined as a point where the determinant of the stiffness matrix becomes zero. Furthermore, the effect of damping, which is proportional to transverse velocity of a belt, is examined, and it shows that this damping has no effect on the critical speed.
- 2008-01-25
著者
関連論文
- 走行するベルトの有限要素振動解析(機械力学,計測,自動制御)
- 走行するベルトの有限要素固有値解析(機械力学,計測,自動制御)
- 時間とともに長さの変わる弦の応答の有限要素法解析(機械力学,計測,自動制御)
- 時間とともに長さの変わる弦のエネルギー変化について(機械力学,計測,自動制御)