Heteroscedastic Gaussian kernel-based topographic maps (特集 生体情報解析と複雑系科学)
スポンサーリンク
概要
- 論文の詳細を見る
Several learning algorithms for topographic map formation have been introduced that adopt overlapping activation regions, rather than Voronoiregions, usually in the form of kernel functions. We review and introduce a number of fixed point rules for training homogeneous, heteroscedastic but otherwise radially-symmetric Gaussian kernel-based topographic maps, or kernel topographic maps. We compare their performance for clustering a number of real world data sets.
- 日本知能情報ファジィ学会の論文
- 2007-12-15
著者
関連論文
- Faithful representations with topographic maps
- Topology-preserving Map Formation Achieved with a Purely Local Unsupervised Competitive Learning Rule
- Heteroscedastic Gaussian kernel-based topographic maps (特集 生体情報解析と複雑系科学)