A14 Effect of Grinding on Water Adsorption of Nano-ball Allophane
スポンサーリンク
概要
著者
-
Khan Hamayoon
Ehime Univ.
-
MATSUE Naoto
Ehime Univ.
-
HENMI Teruo
Ehime Univ.
-
Matsue Naoto
Applied Chemistry For Env. Industry Ehime Univ.
-
Matsueda N
Ehime Univ.
関連論文
- B2 Reaction of NaP1 artificial zeolite with acids of different anion species in relation to acid soil amelioration
- P15 Interaction between water molecule and surface structure of soil particles in relation to crop cultivation
- A14 Effect of Grinding on Water Adsorption of Nano-ball Allophane
- ADSORPTION OF WATER ON NANO-BALL ALLOPHANE AS AFFECTED BY HEAT TREATMENT
- Adsorption of Water on Nano-ball Allophane(Soil and Non-Crystalline Clays,Proceedings of the 13^ International Clay Conference)
- B9 A new method for synthesis of nano-tube imogolite
- P4 Chemical Modification for the Structure of Nano-Tubular Imogolite : Effect of Substitution with Some Transition Metal Ions
- COMPETITIVE ADSORPTION OF OXALATE AND PHOSPHATE ON ALLOPHANE AT LOW CONCENTRATION
- A new method for nano tube imogolite synthesis (Special issue: Microprocesses and nanotechnology)
- A13 Full structural optimization of nano-ball allophane
- Validity of Proposed Model for the Chemical Structure of Allophane with Nano-ball Morphology(Soil and Non-Crystalline Clays,Proceedings of the 13^ International Clay Conference)
- MOLECULAR ORBITAL ANALYSIS ON THE DISSOLUTION OF NANO-BALL ALLOPHANE UNDER ALKALINE CONDITION
- DISSOLUTION MECHANISM OF NANO-BALL ALLOPHANE WITH DILUTE ALKALI SOLUTION
- A9 Effect of alkaline metal ions on the dissolution of allophane in alkaline solution and its dissolution mechanism in terms of molecular orbital
- A9 Effect of Temperature on Dissolution of Allophane with Alkaline Solution
- 4-12 Effect of Si/Al Ratio on Dissolution of Allophane with Alkaline Solution
- B1 DISSOLUTION OF ALLOPHANE WITH ALKALINE SOLUTION
- ADSORPTION MECHANISM OF Pb ON PAPER SLUDGE ASH TREATED BY NaOH HYDROTHERMAL REACTUION
- P29 Formation of Na-X zeolite from paper sludge ash and its application for toluene adsorption
- B20 Synthesis of CeO_2-ZSM-11 Nanocomposite from Inorganic Silicon Source and its Characterization
- 4-4 Synthesis of TiO2-Zeolite Nano Composite and Its Application for VOCs Adsorption
- P37 Synthesis of TiO_2-High Silica Zeolite from Waste Materials and its Photo-Catalytic Properties
- A11 Change in Surface Acidity of Allophane upon P Adsorption and its Mechanism Analysis by Molecular Orbital Method
- A11 Change in surface acidity of allophane upon P adsorption and its Mechanism Analysis by Molecular Orbital Method
- 4-10 Change in Dispersion and Flocculation Properties of Allophane with P adsorption
- A17 Effect of Si/Al ratio of allophane on adsorption of phosphate and oxalate
- P33 Lead adsorption on montmorillonite as affected by coexisting phosphate
- A15 Competitive adsorption of oxalate and phosphate on allophane at low concentration
- 4-7 Competitive Adsorption of Phosphate with Oxalate on Nano-ball Allophane
- A12 Change in Surface Charge Properties of Nano ball Allophane as Influenced by Sulfate Adsorption
- CHARGE CHARACTERISTICS MODIFICATION MECHANISMS OF NANO-BALL ALLOPHANE UPON ORTHOSILICIC ACID ADSORPTION
- CHANGE IN SURFACE CHARGE PROPERTIES OF NANO-BALL ALLOPHANE AS INFLUENCED BY SULFATE ADSORPTION
- A12 CHANGE IN SURFACE CHARGE PROPERTIES OF NANO-BALL ALLOPHANE AS INFLUENCED BY SULFATE ADSORPTION
- ADSORPTION MECHANISMS OF COPPER AND ZINC ON NANO-BALL ALLOPHANE
- 4-13 Effect of Sulfate Adsorption on the Surface Charge Properties of Nano-ball Allophane
- 4-11 Effect of Zinc Adsorption on some Surface Charge Characteristics of Nano-Ball Allophane
- B5 Orthosilicic Acid Adsorptive and Some Surface Property Modification Mechanisms of Nano-Ball allophane
- A15 INCREASE IN PHOSPHATE ADSORPTION BY NANOCOMPOSITE FORMATION OF GOETHITE AND ZEOLITE
- A17 SYNTHESIS OF NANO COMPOSIT ZEOLITE WITH SESQUIOXIDE IN RELATION TO ENVIRONMENTAL POLLUTION REMEDIATION
- A19 Adsorption of water on nano-ball as affected by heat treatments, infrared and X-ray powder diffraction data
- B21 Fenton-like Reaction on Degradation of Organic Dye by Natural Allophane
- A New Method for Nano Tube Imogolite Synthesis