Constructive Quantum Field Theories via Lattice Regularizations and Critical Phenomena in Statistical Mechanics : Part I
スポンサーリンク
概要
- 論文の詳細を見る
We discuss construction of the continuum scalar (in particular, φ^4) quantum field theory as subsequence limits of lattice theories and triviality or nontriviality of the limiting theory. Close connection between taking the continuum limit of lattice field theories and approaching the critical point of the corresonding statistical ? mechanical models is exploited to obtain the bound on the renormalized coupling constant of the φ^4 theory. We show that the continuum limits are trivial (i.e. Gaussian) for the (φ^4)_d or (Ising)_d models in dimensions d > 4 and nontrivial (i.e. non-Gaussian) for weakly coupled (φ^4)_d models in dimensions d < 4. Important ingredients in the proofs are the random walk representation and correlation inequalities in rigorous statistical mechanics. Moreover, in the case d = 4, any deviation from the mean field theory at the critical point implies triviality of the continuum limit.
- 素粒子論グループ 素粒子研究編集部の論文
- 1984-11-20
著者
関連論文
- 物理学者の考えること,数学者に期待すること--Yang-Mills理論の定式化とクォーク閉じ込め (特集 数学における場の量子論--新しい数学へ向かう多彩な探求)
- U(1)ゲージ理論における,カイラル対称性の自発的破れ,Ladder近似を越えて(II)(基研短期研究会「強結合相ゲージ理論と統一模型」,研究会報告)
- Magnetic monopole loops supported by a meron pair as the quark confiner
- Charged states and phase structures in Lattice U (1) gauge-Higgs model(素粒子物理学に於ける場の理論,研究会報告)
- Constructive Quantum Field Theories via Lattice Regularizations and Critical Phenomena in Statistical Mechanics : Part I