RIEMANN'S PERIOD MATRIX OF Y^2=X^<2n+2>-1
スポンサーリンク
概要
- 論文の詳細を見る
This paper introduces a rule to get Riemann's period matrix of y^2=x^<2n+2>-1. By this rule we can get unique result which satisfy the Riemann's period relation for a homology of Riemann's surface. In fact, we show two matrix : (π, π') and (^*π, ^*π') for y^2=x^<2n+2>-1 Still more, we look for the modular matrix : T=π^<-1>π', ^*T=^*π^<-1>^*π' and the modular translate S∈SL(2n, Z). The reader can ascertain that T and ^*T are symmetric matrix in n=2, 3.
- 横浜国立大学の論文
著者
-
Yamazaki Seisi
Yamanashi University
-
YAMAZAKI Seiji
Yamanashi University
-
IKEDA Toshikazu
Yokohama National University
-
KUBO Masahiko
Kyourin University
-
TASHIRO Masaaki
Tokyo University of Agriculture and Technology
-
HIGUCHI Teiichi
Yokohama National University
-
Ikeda Toshikazu
Yokohama Nationa University
関連論文
- RIEMANN'S PERIOD MATRIX OF Y^2=X^-1
- Riemann's Period matrix of y^4=x^4-1
- SOME CHARACTERISTICS OF STUDENTS' APPROACHES TO MATHEMATICAL MODELLING IN THE CURRICULUM BASED ON PURE MATHEMATICS
- 1.1.高等学校数学科における数学的モデリングの事例的研究