Schrodinger型方程式に対する初期値問題のH$_\infty$適切性について(偏微分方程式の解の構造の研究)
スポンサーリンク
概要
著者
関連論文
- A Mathematical Note on the Feynman Path Integral for the Quantum Electrodynamics(Spectral and Scattering Theory and Related Topics)
- ON THE FUNCTIONAL DERIVATIVES OF THE GENERATING FUNCTIONAL FOR CORRELATION FUNCTIONS(Spectral and Scattering Theory and Related Topics)
- THE FEYNMAN PATH INTEGRAL REPRESENTATION OF GREEN FUNCTIONS OF THE POSITION AND THE MOMENTUM OPERATORS (Spectral and Scattering Theory and Related Topics)
- On the convergence of the Feynman path integral defined through broken line paths(Spectral and Scattering Theory and Its Related Topics)
- A NOTE ON THE EXISTENCE OF UNITARY PROPAGATOR OF EQUATIONS IN QUANTUM MECHANICS(Spectral and Scattering Theory and Its Related Topics)
- ON THE ESSENTIAL SELF-ADJOINTNESS OF THE RELATIVISTIC HAMILTONIAN OF A SPINLESS PARTICLE(Spectrum, Scattering and Related Topics)
- Schrodinger型方程式に対する初期値問題のH$_\infty$適切性について(偏微分方程式の解の構造の研究)
- ニ重特性根を持つ一階双曲型方程式系の解の特異性の伝播について (偏微分方程式の解の構造の研究)