活性因子・抑制因子型反応拡散系の特異極限問題とパターン形成
スポンサーリンク
概要
- 論文の詳細を見る
Reaction-diffusion system of activator-inhibitor type is studied. We considered the functionals containing a small parameter and a long-range interaction. Such functionals arise from the stationary problem of reaction-diffusion system and from the model for phase separation in diblock copolymers. In one dimensional case, we identify global minimizers on an interval of arbitrary length. In two dimensional case, we show that hexagonal structure has the least energy among all periodic dot patterns. Also we show the existence of non-radial solutions.
- 日本応用数理学会の論文
- 2007-09-26
著者
関連論文
- 活性因子・抑制因子型反応拡散系の特異極限問題とパターン形成
- Singular limit problem for some elliptic systems(Variational Problems and Related Topics)