非線型偏微分方程式の解の準斉次超局所特異性の伝播(代数解析学の発展)
スポンサーリンク
概要
著者
-
山崎 昌男
Department of Mathematics, Hitotsubashi University
-
山崎 昌男
東京大学理学部
-
山崎 昌男
Department Of Mathematics Hitotsubashi University
関連論文
- NAVIER-STOKES EQUATIONS WITH DISTRIBUTIONS AS INITIAL DATA(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)
- 非線型偏微分方程式の解の準斉次超局所特異性の伝播(代数解析学の発展)
- Microlocal Analysis for Nonlinear Equations Describing Incompressible Fluids
- 流体のEuler方程式の解の超局所特異性の伝播(代数解析学)
- 非線型偏微分方程式の解のmicrolocal regularityについて(超函数と線型微分方程式8)