A NOTE ON $ \mathbb{P}^1 $-BUNDLES AS HYPERPLANE SECTIONS
スポンサーリンク
概要
- 論文の詳細を見る
Let $ M $ be a five-dimensional manifold polarized by a very ample line bundle $ L $. We show that a smooth $ A \in \mid L \mid $ cannot be a holomorphic $ \mathbb{P}^1 $-bundle over a smooth projective $ 3 $-fold $ Y $, unless $ Y \fallingdotseq \mathbb{P}^3 $ and $ A \fallingdotseq \mathbb{P}^1 \times \mathbb{P}^3 $.
著者
-
BELTRAMETTI Mauro
Dipartimento di Matematica Via Dodecaneso
-
FANIA Maria
Dipartimento di Matematica Universita degli Studi di L'Aquila
-
SOMMESE Andrew
Departmetn of Mathematics University of Notre Dame
-
Fania Maria
Dipartimento Di Matematica Universita Degli Studi Di L'aquila
-
Fania Maria
Dipartimento Di Matematica Universita Degli Studi Dell'aquila
-
Sommese Andrew
Department Of Mathematics
-
Beltrametti Mauro
Dipartimento Di Matematica
-
Fania Maria
Dipartimento di Ingegneria e Scienze dellInformazione e Matematica, Università degli Studi di LAquila
関連論文
- A NOTE ON $ \mathbb{P}^1 $-BUNDLES AS HYPERPLANE SECTIONS
- Del Pezzo surfaces as hyperplane sections
- Double covers of P^n as very ample divisors
- Varieties whose surface sections are elliptic
- Projective surfaces with K-very ample line bundles of degree≦4K+4
- New properties of special varieties arising from adjunction theory
- A remark on the Kawamata rationality theorem
- On Higher Order Embeddings of Fano Threefolds by the Anticanonical Linear System
- Reducible hyperplane sections I Dedicated to the memory of our friend and colleague, Michael Schneider
- Extension of modifications of ample divisors on fourfolds: II
- A remark on the Kawamata rationality theorem