1409 球状粒子を含む不均一材料の巨視的弾性係数の評価(S18-2 複合材料,S18 不規則性,不均一性構造・材料の数理モデルとその応用)
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, it is evaluated global averages of elastic properties of Inhomogeneous Material including spherical inclusions by using a three dimensional analysis based on the finite element method. In the numerical analysis, it is assumed that particles of the same radius are arrayed in body-centered cubic, face-centered cubic, or simple cubic. The volume fraction of the material is determined by the radius of particles and number of particle par a cube. And by giving restrictions or displacements on the surfaces of the cube, the global Young's modulus and the global Poisson's ratio of the material are obtained from the reaction forces. As an example, it is considered that a material consists of epoxy and glass. The obtained results are compared with results by methods based on Eshelby's equivalent inclusion theory.
- 一般社団法人日本機械学会の論文
- 2005-09-18
著者
関連論文
- 9013 等径球状粒子を含む複合材料の巨視的弾性特性に及ぼす粒子間距離の影響(GS-B 一般セッション(材料の変形))
- 1409 球状粒子を含む不均一材料の巨視的弾性係数の評価(S18-2 複合材料,S18 不規則性,不均一性構造・材料の数理モデルとその応用)
- 21106 球状粒子強化型複合材料の巨視的弾性係数の評価(材料力学(シミュレーション))
- 球状粒子分散型複合材料の粒子回りの応力分布(材料工学II)