構造物の吸収エネルギ
スポンサーリンク
概要
- 論文の詳細を見る
Structural failure will occur when the energy impact to the system exceeds the capacity of energy absorption of the structure. The energy absorption within the elastic range has already been studied by Drs. Muto and Umemura. The author has tried to expand this theory beyond the yield point. By the principle of energy conservation, the following equation generally holds. Energy input=Absorbed energy+Kinetic energy+Feed back energy. A: Elastic behavior 1. Let N, M and Q denote axial force, bending moment and shearing force, respectively, in a structural member, Elastic energy=[numerical formula] where ∫applies to whole length of each member, Σ denotes the summation of all members, and k means the characteristic modulus. 2. When the external load is in equilibrium with resisting force of the structure (restoring force plus inertia force, neglecting both energy dissipation and effect of Poisson's ratio), U=φ_e=EA⊿ where U=energy input φ_e=elastic energy A=sectional area ⊿=deflection 3. When the more energy is dissipated, the less stress is induced in the structure due to the equal energy input, hence the structure becomes safer, and vice-versa. B: Plastic behavior 1. General consideration The absorption energy of the structure (φ_p) is the sum of each absorption energy of the members, and in plastic range N_p, M_p and Q_p are constant, then φ_p=[numerical formula] Summarily the absorption energy in static condition is as follows: Absorption energy=Elastic a.e.+Plastic a.e.+creep a.e. 2. Simple example (a) Simple beam with uniform load: U=[numerical formula] where l=span θ_0=end rotation at elastic limit θ=end rotation at plastic limit (b) Cantilever with uniform load: U=[numerical formula] (c) Fixed beam with uniform load: U=[numerical formula] (d) Reinforced Concrete beam: Above equations can be used, and [numerical formula] where Z=plastic section modulus Z_e=elastic section modulus [numerical formula] [numerical formula](by Dr. Umemura) θ=0.02〜0.05 radian (by Dr. Ban) By the calculation in simple examples, the auther has shown that the elastic absorption is very much less than the plastic absorption energy, and in these examples the ratio were about 1.0% in the care of the reinforced concrete beam and about 0.24% in the case of the I beam.
- 社団法人日本建築学会の論文
- 1962-12-30
著者
関連論文
- 4. 広島デルタに於ける建物の不同沈下について (2)
- 4. 広島デルタに於ける建物の不同沈下について (1)
- 中国地方の豪雪害について
- 構造物の吸収エネルギ
- 第1章 広島市内主要建築物の基礎形式(第2編)
- 1. 広島市における地盤並に基礎に関する調査の概要
- 2 広島地域におけるセメント及びコンクリートの強度
- 18. 農村自家生産ブロック造について
- 62 児島湾干拓地入植住宅基礎荷重試験報告
- 89 児島湾干拓入植住宅の基礎工事に就いて
- 11. 文献によるAEコンクリートの特性
- 46. 原爆による鉄筋コンクリート建物の破壊 : 広島市に於ける異地調査報告