16 建築設備に於ける同時使用問題の解法について
スポンサーリンク
概要
- 論文の詳細を見る
The estimation of simultaneous use number or simultaneous use rate is one of the most fundamental problems On building equipment design. The purpose of this report is to study the calculating method of simultaneous use quantity under general conditions of the system. In the first section of the report, we give the probability distribution of simultaneous use number. This distribution nearly equal to binomial distribution if all fixtures are occupied in succession. On the other hand, when it is a chance in a thousand to use all fixtures, the distribution is very similar to poisson type. Secondary, the probability on the system with different type and size of fixtures is considered. In this case, the distribution function is defined as a faltung of distribution shown at the first section. When there are many fixtures in the system, we can use the central limit theorem in probability theory, then obtain the next type formula as a approximation. [numerical formula] where U_<max> Maximum quantity used simultaneously. E(U) Mean value of quantity used in the system. V_p(U) Variance of quantity used in the system, supposing that simultaneous use probabilities of every groops in the system have poisson type distribution. k, ⊿ Constant with probability of excess K. See Table 1.
- 社団法人日本建築学会の論文
- 1960-06-26
著者
関連論文
- 3080 ラッシュアワーにおける集中現象の分析 : 共用設備の規模算定に関する諸問題・その2(計画)
- 3076 共用設備の規模算定に関する諸問題(その1)(計画)
- 16 建築設備に於ける同時使用問題の解法について
- 65. 建築計画におけるqueuing理論の適用性について(その4)
- 64. 建築計画におけるqueuing理論の適用性について(その3)
- 63. 建築計画におけるqueuing理論の適用性について(その2)
- 62. 建築計画におけるqueuing理論の適用性について(その1)
- 3057 モデュール数列の構成と特性について(計画)
- 57. モデュールと標準寸法の関係
- モデュールの加算性について
- 3054) 利用者の時間的集中と所要規模の関係(計画・設備)
- 58. 異種類の器具が混在する場合の同時使用率
- 317 同時使用率に関する二・三の問題について(計画・設備)
- 330 規模論の統一に関する理論的考察(計画)