4個の値{a_j}をE_2(a_j,f)=E_2(a_j,g)の意味で、かつ5個めの値をCMの意味で共有する有理型函数fとg
スポンサーリンク
概要
- 論文の詳細を見る
Let f and g be distinct nonconstsnt meromorphic functions. Assume that they satisfy E_2(a_j,f)=E_2 (a_j,g) (For this notation see [1.(δ)].) for j=1,…,5, where α_1=∞, α_2=0, α_3=1, α_4=a, α_5=b. Further if f and g share ∞ almost CM, and if τ(0;f,g:I) > 1/2(For this notation see [1.(ζ)].) for some set I of infinite Lebesgue measure, then {a,b}={ω,ω^2} and f^3≡g^3. This fact corresponds to Theorem 1 in [3] in the case that f and g share four values IM.
- 大同工業大学の論文