Critical Properties of Phase Transitions in Lattices of Coupled Logistic Maps(Oscillation, Chaos and Network Dynamics in Nonlinear Science)
スポンサーリンク
概要
- 論文の詳細を見る
We numerically demonstrate that collective bifurcations in two-dimensional lattices of locally coupled logistic maps share most of the defining features of equilibrium second-order phase transitions. Our simulations suggest that these transitions between distinct collective dynamical regimes belong to the universality class of Miller and Huse model with synchronous update [Marcq et al., Phys. Rev. Lett. 77 (1996), 4003].
- 理論物理学刊行会の論文
- 2006-04-20
著者
-
Chate Hugues
Cea - Service De Physique De L'etat Condense
-
MARCQ Philippe
Institut de Recherche sur les Phenomenes Hors Equilibre
-
MANNEVILLE Paul
LadHyX - Laboratoire d'Hydrodynamique
-
Manneville Paul
Ladhyx - Laboratoire D'hydrodynamique