Low-Dimensional Chaos in Populations of Strongly-Coupled Noisy Maps(Oscillation, Chaos and Network Dynamics in Nonlinear Science)
スポンサーリンク
概要
- 論文の詳細を見る
We characterize the macroscopic attractor of infinite populations of noisy maps subjected to global and strong coupling by using an expansion in order parameters. We show that for any noise amplitude there exists a large region of strong coupling where the macroscopic dynamics exhibits low-dimensional chaos embedded in a hierarchically-organized, folded, infinite-dimensional set. Both this structure and the dynamics occurring on it are well-captured by our expansion. In particular, even low-degree approximations allow to calculate efficiently the first macroscopic Lyapunov exponents of the full system.
- 理論物理学刊行会の論文
- 2006-04-20
著者
-
Chate Hugues
CEA-Saclay
-
Chate Hugues
Cea-service De Physique De L'etat Condense Centre D'etudes De Saclay
-
DE MONTE
CNRS-UMR 7625, Ecole Normale Superieure
-
MOSEKILDE Erik
Department of Physics, The Technical University of Denmark
-
De Monte
Cnrs-umr 7625 Ecole Normale Superieure
-
Mosekilde Erik
Department Of Physics The Technical University Of Denmark
-
CHATE Hugues
CEA-Service de Physique de l'Etat Condense, Centre d'Etudes de Saclay
関連論文
- 21pVD-13 Lyapunovモードの双曲性と大自由度散逸系の有効次元(21pVD その他の力学系モデル,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 21pVD-12 Lyapunovベクトルで捉える大自由度力学系の集団挙動モード(21pVD その他の力学系モデル,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- Low-Dimensional Chaos in Populations of Strongly-Coupled Noisy Maps(Oscillation, Chaos and Network Dynamics in Nonlinear Science)
- 21pGS-7 Lyapunovベクトルで捉える散逸力学系の有効次元(III) : 周期軌道との関係(21pGS 力学系とその周辺,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 27pXM-13 集団挙動Lyapunovモード(27pXM 反応拡散系・振動子系・力学系とその周辺,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 29aPS-52 記憶の効果を取り入れた自発駆動する棒状粒子の集団運動モデル(29aPS 領域12ポスターセッション,領域12(ソフトマター物理,化学物理,生物物理))