Open Coloring Axiomについて(数学基礎論およびその応用)
スポンサーリンク
概要
著者
-
渕野 昌
神戸大学大学院工学研究科
-
渕野 昌
Department Of Natural Science And Mathematics
-
渕野 昌
Freie Universitat Berlin
-
渕野 昌
Freie Univ., Berlin
関連論文
- LATEXソースの解析による編集ツールの提供
- LATEXソースの解析による編集ツールの提供
- A stronger version of stationarity preserved under
- A stronger version of stationarity preserved under
- On Kunen's Theorem Concerning Projective Absoluteness
- 加法的関数の連続性について
- R. Dedekind の数学の基礎付けと集合論の公理化 (数学史の研究)
- Fodor-type Reflection Principle and Balogh's reflection theorems (Combinatorial set theory and forcing theory)
- Left-separated topological spaces under Fodor-type Reflection Principle (Combinatorial and Descriptive Set Theory)
- A generalization of a problem of Fremlin (Axiomatic Set Theory and Set-theoretic Topology)
- $^\kappa\kappa$ in light of the Tukey ordering(Forcing and Infinitary Combinatorics)
- PRINC$(\kappa, \lambda)$, $C^s(\kappa)$, HP$(\kappa)$ etc. and variants of the bounding number (Forcing Method and Large Cardinal Axioms)
- Forcing Axioms と連続体問題 : 公理的集合論の最近の話題から
- Internal approachabilityの諸相とその応用 (集合論的手法による相対的無矛盾性の証明の周辺)
- Models of real-valued measurability (Axiomatic Set Theory)
- Weak Freese-Nation Propertyについて
- Open Coloring Axiomについて(数学基礎論およびその応用)
- Remarks on the coloring number of graphs (Interplay between large cardinals and small cardinals)
- On reflection and non-reflection of countable list-chromatic number of graphs (Aspects of Descriptive Set Theory)
- Is "naive set theory" really that naive ? (Study of the History of Mathematics)
- 加法的関数の連続性について
- A stronger version of stationarity : preserved under