Galois加群としてのF^x/F^<xn>の分解
スポンサーリンク
概要
- 論文の詳細を見る
A direct sum decomposition of the Galois module F^x / F^<xn> is given for an arbitrary finite Galois extension F/Fo, [Fo:Q] < ∞, where each summand is indecomposable and of finite length. In the case where F/Fo is a cyclic p-extension the summands of F^x / F^<xp> are determined explcitly.
- 三重大学の論文
- 2004-03-31
著者
関連論文
- MATRIX COEFFICIENTS OF THE MIDDLE DISCRETE SERIES OF $SU(2,2)$ (Automorphic Forms and Number Theory)
- Galois加群としてのF^x/F^の分解
- The matrix coefficients of the large discrete series of $SU$(3,1) (Automorphic forms, trace formulas and zeta functions)
- 保型L関数とWhittaker関数(Sp(4)の場合)(Sp(2 ; $\mathbb{R}$)とSU(2,2)上の保型形式)
- On contribution of elliptic elements to trace formula
- 定符号3次ユニタリ群の類数について(Automorphic representation の研究)
- U(1,2)とU(3)におけるHecke作用素の跡の交代和(保型形式シンポジウム)