ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS OF A PARABOLIC EQUATION WITH THE P-LAPLACIAN(Nonlinear Evolution Equations and Applications)
スポンサーリンク
概要
著者
-
太田 雅人
埼玉大学理学部数学科
-
藤井 中
Department of Mathematical Sciences, University of Tokyo
-
太田 雅人
Department of Mathematical Sciences, University of Tokyo
-
藤井 中
Department Of Mathematical Sciences University Of Tokyo
関連論文
- 微分型非線形シュレンディンガー方程式の孤立波の安定性(変分問題とその周辺)
- Strong instability of standing waves for nonlinear Klein-Gordon equations (Studies on nonlinear waves and dispersive equations)
- Blow-up for nonlinear wave equations with multiple speeds (Evolution Equations and Asymptotic Analysis of Solutions)
- 半線形波動方程式系の解の爆発 (非線型双曲型方程式系の解の挙動に関する研究)
- 波動写像の特異点 (偏微分方程式の解の適切性と正則性に関する研究)
- On standing waves for nonlinear Schrodinger equations with potentials (Harmonic Analysis and Nonlinear P.D.E.)
- Stability of solitary waves for coupled Klein-Gordon-Schrodinger equations in one space dimension (Variational Problems and Related Topics)
- ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS OF A PARABOLIC EQUATION WITH THE P-LAPLACIAN(Nonlinear Evolution Equations and Applications)
- STABILITY OF SOLITARY WAVES FOR THE ZAKHAROV EQUATIONS(Nonlinear Evolutions Equations and Their Applications)
- STABILITY OF SOLITARY WAVES FOR THE ZAKHAROV EQUATIONS IN ONE SPACE DIMENSION