解析汎関数のいくつかの変換とその応用(函数解析を用いた偏微分方程式の研究)
スポンサーリンク
概要
著者
関連論文
- Daubechies Operator in Bargmann-Fock space (時間周波数解析の手法と理工学的応用)
- A new proof of Carlson's theorem by Plana's summation formula (微分方程式の漸近解析と超局所解析)
- Plana's Summation Formula for Holomorphic Functions of Exponential Type (Microlocal Analysis and Related Topics)
- Difference equation in the space of holomorphic functions of exponential type and Ramanujan summation
- 解析汎関数のいくつかの変換とその応用(函数解析を用いた偏微分方程式の研究)
- Transformation $\tilde{G}$ for analytic functionals and its applications(Generalized Functions and Differential Equations)
- Algebraic integer valued holomorphic functions of exponential type(Complex Analysis and Differential Equations)
- Some theorems for holomorphic functions with proximate order 1+log(log r) /log r(Several aspects of algebraic analysis)
- Lerch's theorem for analytic functionals with unbounded carrier(Microlocal Analysis And Global Analysis)
- Liouville type theorem for hyperfunctions and its applications(Algebraic Analysis)
- 解析汎函数の理論におけるワトソン変換 (フーリェ超函数と偏微分方程式)
- 無限大に台をもつ超函数 (微分方程式の超局所解析)
- 半平面上で定義された算術的正則函数の全平面への解析接続 (線型微分方程式の超局所解析)
- 非コンパクト支台を持つ解析汎函数も解析函数である (場の量子論の代数解析的研究)
- Analytic continuation of eigenvalues of Daubechies operator and Fourier ultra-hyperfunctions (Recent development of microlocal analysis and asymptotic analysis)