30-4 A Computational Model for Automatic Face Detection in Natural Scene Images using Color and Shape Information
スポンサーリンク
概要
- 論文の詳細を見る
We use color and shape information for detecting and locating human faces in two-dimensional natural scene images. A color input image is first segmented using prespecified domains of hue and saturation that describe the color of human skin. After theresholding in hue and saturation, we group regions of the binarized image which have been classified as potential face candidates into a small number of clusters of connected pixels. We then implement a shape analysis by calculating moments for each cluster that are translation, scale and in-plane rotation invariant. In order to distinguish faces from distractors, a multilayer perceptron neural network is then used with the invariant moments as the input vector. Supervized learning of the network is implemented with the backpropagation algorithm, at first for frontal views of faces.
- 社団法人映像情報メディア学会の論文
- 1997-07-29
著者
-
赤松 茂
Atr Human Information Processing Research Laboratories
-
David Martin
Atr Human Information Processing Research Laboratories
-
TERRILLON Jean-Christophe
ATR Human Information Processing Research Laboratories
関連論文
- 11)顔の認識における視点依存性 : 性識別課題から(ヒューマンインフォメーション研究会)
- 8)2枚の無校正顔画像からの顔の3次元構造の復元 : 任意方向・任意表情の顔画像の生成
- 30-4 A Computational Model for Automatic Face Detection in Natural Scene Images using Color and Shape Information