A Laser Succesive Pulse Heating of a Moving Slab : Akinetic Theory Approach
スポンサーリンク
概要
- 論文の詳細を見る
Laser successive pulse heating of engineering surfaces becomes fruitful for thermal treatment of the engineering parts. In this case, thermal integration of the surface temperature becomes essential. In the present study, a 3-dimensional mathematical model allowing a laser successive pulse heating is introduced using an electron kinetic theory approach. A laser beam is considered to scan the workpiece surface with a constant velocity. However, the energy equation so derived is in the form of an integro-differential equation which does not yield an analytical solution. Therefore, a numerical method using an explicit scheme is introduced to obtain the temperature profiles. It is found that energy gain of the lattice site atoms through successive electron-phonon collisions is considerable in the surface vicinity. Moreover, some oscillations in surface temperature occur in response to repetitive pulse frequency. It is less likely that the temperature profile follows the pulse profile which is due to the conduction losses and the motion of the slab.
- 社団法人応用物理学会の論文
- 1998-04-15
著者
-
Yilbas B
King Fahd Univ. Petroleum And Minerals Dhahran Sau
-
YILBAS Bekir
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals
-
Yilbas Bekir
Department Of Mechanical Engineering King Fahd University Of Petroleum And Minerals
-
SAMI M.
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals
-
DANISMAN K.
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals
-
Danisman K.
Department Of Mechanical Engineering King Fahd University Of Petroleum And Minerals
-
Sami M.
Department Of Mechanical Engineering King Fahd University Of Petroleum And Minerals
関連論文
- An Approach to Convergency of Kinetic Theory to Fourier Theory in Relation to Laser Heating Process
- A Laser Succesive Pulse Heating of a Moving Slab : Akinetic Theory Approach
- Laser Heating Mechanisms Including Evaporation Process-Semiclassical and Kinetic Theory Approaches