不静定立体トラスシエルの差分法による解法 : 円筒形シエルについて
スポンサーリンク
概要
- 論文の詳細を見る
Up to the previous reports, the equations of deformation, stresses and forces have been expressed in partial difference. Whilst the crossed type was soluted by the method using proper values, the others by calculation of simultaneous algebraic equations with many unknowns. This time, we will take up analysis of cylindrical spaced truss using the same method. Firstly, let us consider that the stresses of several chords are an unknown quantities and if we begin to find the equilibruim of external forces and chord stresses at every point, then force eqilibruim can be obtained by eliminating lattice stresses. Next we find the equation of deformation with respect to horizontal displacement conditions with the exception of shearing deformation. From these, two equations so obtained are used in the original form and the chord stress are solved by the method of simultaneous algebraic equation. Comparing the results of spaced trussed plate with those of spaced trussed shell, we find that the stress or deformation of the latter is considerably smaller than that of the former. Moreover, if the spaced truss of this type is used in bending form, it was found that it can be utilized most satisfactory as the shell, and at the same time the efficiency of spaced truss of this type in shear resistance of middle plane has been evidently reaffirmed.
- 社団法人日本建築学会の論文
- 1965-06-30
著者
関連論文
- 不静定立体トラス平板の差分法による解法 (その 5) : 十字形四階線形偏差分方程式の解法 : 四点支持無限連続
- 不静定立体トラスシエルの差分法による解法 : 円筒形シエルについて
- 不静定立体トラス平板の差分法による解法(その2)
- 不静定立体トラス平板の差分法による解法(その1)
- 格子梁の差分法による解法
- 2032 立体トラスの設計 : 短形鉄骨シャーレンの設計について(構造)
- 272 立体トラス版の実験的研究(構造)