非線形運動方程式の定常解問題 : 第 1 報-既往の研究と非線形代数方程式の未知数の分類
スポンサーリンク
概要
- 論文の詳細を見る
Nonlinear vibration problems are reviewed in their aspect of their phenomenon and their basic nonlinear equations of motion. Many papers which deal with nonlinear vibrations in elastic systems depend on the Duffing equation or the Mathieu-Hill equation. But they do not include the general nonlinear equations of motion obtained by considering the finite deformation theory in elasticity, because the Duffing equation corresponds to the system which nonlinear springs are monotone functions of displacement and the Mathieu-Hill equation is the approximate equation derived by assuming separate variables. Then if we adopt the general nonlinear equations of motion as the basic equation for nonlinear vibrations, the treatment of nonlinear vibration problems is unified. In order to classify nonlinear vibrations it is necessary to grasp the global feature of unkowns in algebraic equations. The local feature of them have been precisely studied in the static nonlinear stability problems. Then applying the theory we construct the classification of the unkowns in algebraic equation and a global definition of the symmetric bifurcation.
- 社団法人日本建築学会の論文
- 1979-02-28
著者
関連論文
- 非線形運動方程式の定常解問題の分類 : 非線形運動方程式の定常解問題-第 2 報
- 非線形運動方程式の定常解問題 : 第 1 報-既往の研究と非線形代数方程式の未知数の分類
- Step 荷重を受ける偏平構造物の動的座屈解析 (梗概) : 第 2 報 : 新しい手法の適用
- Step 荷重を受ける偏平構造物の動的座屈解析 (梗概) : 第 1 報 : 新しい解析手法の提示
- 扁平構造物のStep荷重による動的座屈 : 多自由度系の非線形自由振動としての扱い : 構造系
- 8 保存力場自律系1自由度の非線形運動方程式の周期解(構造)