Demonstration of Respiration-Dependent Water Uptake and Turgor Generation in Vigna Hypocotyl
スポンサーリンク
概要
- 論文の詳細を見る
Respiration-dependent water uptake and turgor change were observed by the xylem perfusion technique. Immediate and reversible shrinkage with anoxia were repeatedly demonstrated under appropriate osmotic stress in elongating cow pea hypocotyl segments. Such shrinkage and re-elongation were always preceded by reversible inhibition and re-activation of the electrogenic xylem pump, respectively. In mature zone segments where cell wall extensibility had been shown to be practically null by means of the turgor jump method, anoxia and reaeration caused elastic shrinkage and expansion, respectively. The extent of respiration-dependent turgor was calculated from the amplitudes of the elastic volume change induced by pressure jump and anoxia. In such segments, the direction of water flow across the xylem-symplast interface should be determined solely by the cell wall elasticity and the change in apoplasmic concentration of osmotica controlled by the xylem pump activity, irrespective of any change in water conductivity or cell wall extensibility.
- 日本植物生理学会の論文
著者
-
Katou Kiyoshi
Biological Institute, Faculty of Science, Nagoya University
-
Okamoto Hisashi
Biological Institute, Faculty of Science, Nagoya University
-
Katou Kiyoshi
Biological Institute Faculty Of Science Nagoya University
-
Okamoto Hisashi
Biological Institute Faculty Of Science Nagoya University
関連論文
- Measurement of the Respiration-Dependent Component of Intracellular Pressure with an Improved Pressure Probe
- Effects of Osmotic Stress, Salt Stress and IAA on the Regeneration of the Resting Membrane Potential after Excision of a Segment from an Intact Plant
- Effects of Exogenous Auxin on the Regulation of Elongation Growth of Excised Segments of Vigna Hypocotyls under Osmotic Stress : ENVIRONMENTAL AND STRESS RESPONSES : MEMBRANES AND BIOENERGETICS
- Effects of Osmotic Stress, Ionic Stress and IAA on the Cell-Membrane Resistance of Vigna Hypocotyls
- Regulation of Elongation Growth of Excised segments of Vigna Hypocotyl under Osmotic Stress in the Absence or Presence of Absorbable Solute
- A Pressure-Jump Method as a New Tool in Growth Physiology for Monitoring Physiological Wall Extensibility and Effective Turgor
- Effects of Auxin and Anoxia on the Cell Wall Yield Threshold Determined by Negative Pressure Jumps in Segments of Cowpea Hypocotyl
- Computer Simulation of the Rapid Adaptation of Elongation Growth to Osmotic Stress in Segments of Cowpea Stem by Application of the Apoplast Canal Model
- Auxin Changes Both the Extensibility and the Yield Threshold of the of Cell Wall of Vigna Hypocotyls
- The Role of Membrane Potential for the Control of Elongation Growth of Vigna Hypocotyl : Response of a Hollow Cylinder to Osmotic and Ionic Stress
- Structure and function of the elongation sink in thesteruls of higher plants I. Effects of anoxia and IAA on the growth rate and the spatially separate electrogenic ion pumps
- Distribution of electric potential and ion transport in the hypocotyl of Vigna sesquipedalis V. Electrogenic activity of the parenchyma cells in hypocotyl segments
- Demonstration of Respiration-Dependent Water Uptake and Turgor Generation in Vigna Hypocotyl
- The Characteristics of the Adjustment in the pH of the Xylem Exudate of Segments of Vigna Hypocotyls during Xylem Perfusion
- Distribution of electric potential and ion transport in the hypocotyl of Vigna sesquipedalis VI. The dual structure of radial electrogenic activity
- Distribution of electric potential and ion transport in the hypocotyl of Vigna sesquipedalis II. Axial potential difference
- Effects of anoxia and high CO_2 concentration on the electrogenic activity of leaf cell membrane in the dark
- The Quantitative and Chronological Relationship between IAA-Induced H^+-pump Activation and Elongation Growth Studied by means of Xylem Perfusion
- Distribution of electric potential and ion transport in the hypocotyl of Vigna sesquipedalis I. Distribution of overall ion concentration and the role of hydrogen ion in generation of potential difference