Steady Stokes Flow in and around a Droplet Calculated Using Viscosity Smoothened across Interface(Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics and Fluid Mechanics)
スポンサーリンク
概要
- 論文の詳細を見る
Velocity continuity and force balance are usually required at the interface of two fluid phases in conventional hydrodynamics, where the viscosity is assumed to be constant in a single fluid phase. These boundary conditions connect the pressure and velocity fields across the interface. An alternative way to achieve this connection, where the viscosity is assumed to smoothly change across a thin interfacial region, was proposed to facilitate the numerical study of colloidal dynamics. We study the steady Stokes flow in and around a single droplet by use of the smoothened viscosity, imposing a purely extensional flow far from the droplet. In the limit of the thin interfacial region, we analytically obtain a set of connection formulas, which yields the fields that are different from those obtained in conventional hydrodynamics unless the droplet is a rigid body.
- 社団法人日本物理学会の論文
- 2006-01-15
著者
-
FUJITANI Youhei
School of Fundamental Science & Technology, Keio University
-
Fujitani Youhei
School Of Fundamental Science And Technology Keio University
関連論文
- Clebsch Potentials in the Variational Principle for a Perfect Fluid(Cross-Disciplinary Physics)
- Steady Stokes Flow in and around a Droplet Calculated Using Viscosity Smoothened across Interface(Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics and Fluid Mechanics)
- Concentration Fluctuation in a Two-Component Fluid Membrane Surrounded with Three-Dimensional Fluids(Condensed matter: structure and mechanical and thermal properties)
- Vacancy-Assisted Diffusion in a Honeycomb Lattice and in a Diamond Lattice(Condensed Matter : Structure, Mechanical and Thermal Properties)
- Group-Theoretical Calculation of the Diffusion Coefficient via the Vacancy-Assisted Mechanism(Condensed Matter : Structure, Mechanical and Thermal Properties)
- Self-Diffusion in a Lattice via the Interstitialcy Mechanism(Condensed matter: structure and mechanical and thermal properties)
- Connection of Fields across the Interface in the Fluid Particle Dynamics Method for Colloidal Dispersions(Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid mechanics)
- One-Dimensional Shift of a Brownian Particle under the Feedback Control
- A Variational Principle for Dissipative Fluid Dynamics(Cross-Disciplinary Physics)
- Drag Coefficient of a Liquid Domain in a Fluid Membrane
- Perturbation Calculation for the Density Profile across the Flat Liquid–Vapor Interface in the Steady Heat-Flow State
- Numerical Study on the Generalized Second Law for a Brownian Particle under the Linear Feedback Control
- Drag Coefficient of a Liquid Domain in a Fluid Membrane Almost as Viscous as the Domain
- A Variational Principle for Dissipative Fluid Dynamics
- Drag Coefficient of a Rigid Spherical Particle in a Near-Critical Binary Fluid Mixture
- Flow around a Circular Pore of a Flat and Incompressible Fluid-Membrane
- Drag Coefficient of a Raftlike Domain Embedded in a Fluid Membrane Being a Near-Critical Binary Mixture
- Jarzynski Equality Modified in the Linear Feedback System