超短パルス高輝度レーザー装置T^6の開発
スポンサーリンク
概要
- 論文の詳細を見る
超短パルスモード同期発振器の出現により、チャープパルス増幅の概念と組み合わせば、テープルサイズの装置からテラW級の出力が得られるようになった。大型装置でなく、実験室規模の装置から大出力が得られると、高エネルギー密度下での物質との相互作用物理の研究分野が広がるものと期待できる。超短パルスモード同期発振器は広帯域の蛍光特性をもつ結晶の普及により可能となった。中でも、チタンサファイアは傑出した特徴を有している。我々は、このようなチタンサファイア結晶の特徴を最大限に生かした、レーザー装置、T^6レーザーを構築中である。T^6レーザーはTabe-top Ten Tear-Watt Ten-Hz Tunable Ti:sapphire laserの頭字語である。一般的なテラW級チャープパルス増幅レーザーシステムでは、フェムト秒モード同期発振器からのパルス列を増幅する前に、増幅中の非線形効果を回避するため、パルスストレッチャーにより数10〜100psecにパルス幅を広げる。この時点での、パルスエネルギーはナノJ程度である。このパルスを後段のパワー増幅器で効率的に増幅するためには、その前にミリJ程度に増幅しておく必要がある。この高利得(60dB)前置増幅器は、後述するように、システム全体の性能を左右する重要なものである。この後、パワー増幅器により100mJ程度にまで増幅する。最後にパルスを圧縮し、テラWが得られる。ただし、システム全体を通しての群速度分散があるので、もとのパルス幅にまで戻らないので群速度分散補償が必要になる。より短いパルスは、確かに、より高い尖頭パワーを与えたくれる。しかし、その応用研究によっては、単に尖頭パワーが大きいだけではなく、パルス前部にプリパルスをもたない、高コントラスト比のパルスを要求する。このような、パルスを得るためには、(1)利得の大きい前置増幅器でのASEの低減、(2)システム内の波長分散抑止とパルス圧縮器での高品位再生が重要となる。本報告では、T^6レーザー用に開発した高利得前置増幅器に関する実験結果、及び回折格子対圧縮器による高次波長分散補償の限界と高コントラスト比を得るための適正パルス幅についての解析結果について報告する。
- 1996-09-18
著者
-
阪部 周二
京大化研
-
井澤 靖和
大阪大学・レーザー核融合研究センター
-
阪部 周二
大阪大学工学部
-
久下 智之
阪大レーザー研
-
坂部 周二
阪大レーザー研究センター
-
浦野 徹
大阪大学工学研究科
-
上山 宏樹
大阪大学工学研究科
-
久下 智之
大阪大学工学研究科
-
井澤 靖和
大阪大学工学研究科電子情報エネルギー工学専攻レーザー核融合研究センター
関連論文
- 22pTJ-3 局所水素ドープターゲットを用いた超高強度極短パルスレーザーによるイオンビーム生成(22pTJ 領域2,ビーム物理領域合同(レーザープラズマ加速・高エネルギー密度プラズマ物理),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 20pGL-11 低フルーエンスフェムト秒レーザー照射金属表面からの放出イオン測定によるナノアブレーションダイナミクスの解明(20pGL 表面ダイナミクス・水素ダイナミクス,領域9(表面・界面,結晶成長))
- 30pUC-13 偏光X線分光による超高強度レーザー生成プラズマ中の電子速度分布診断法の開発(30pUC 核融合プラズマ(輸送・閉じ込め特性),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 24aXG-10 超高強度レーザー生成プラズマにおける偏光X線分光(診断法・計測器/プラズマ分光・原子過程(イオン温度・流速・負イオン/EuV),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 24aB07 超高強度レーザー生成プラズマ中の非等方高速電子に関する偏光X線分光診断(プラズマ計測, (社) プラズマ・核融合学会第21回年会)
- 23aQA-4 偏光X線分光法による3次元電子速度分布診断(23aQA 核融合プラズマ(慣性閉じ込め核融合/超高強度レーザー),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 12aXB-4 超高強度レーザー生成プラズマ中のエネルギー輸送に関する X 線分光診断(フラスマ分光 原子過程 : 領域内横断, 領域 2)
- 23pGP-1 フェムト秒レーザー照射による金属薄膜の結晶構造変化(23pGP ナノ構造・局所光学現象,領域9(表面・界面,結晶成長))
- 22pTJ-17 高強度短パルスレーザーと薄膜との相互作用による電子放射特性II : 電子放射角度分布(22pTJ 領域2,ビーム物理領域合同(レーザープラズマ加速・高エネルギー密度プラズマ物理),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 22pTJ-17 高強度短パルスレーザーと薄膜との相互作用による電子放射特性II : 電子放射角度分布(22pTJ 領域2,ビーム物理領域合同(レーザープラズマ加速・高エネルギー密度プラズマ物理),ビーム物理領域)
- 2p-K-8 激光XII号2ω実験におけるX線幅射型キャノンボールターゲットの特性
- 2p-K-4 アブレーション圧縮における不安定性の観測
- 18pQE-4 高強度フェムト秒レーザー照射アルゴンクラスターからの電磁波放射(プラズマ科学(高強度レーザー,ジャイロトロン),領域2,原子・分子,量子エレクトロニクス,放射線物理)
- 高強度レーザーを用いた非線型コンプトン散乱の基礎実験I
- 5a-Q-13 非線型コンプトン散乱実験経過報告
- 22pTJ-3 局所水素ドープターゲットを用いた超高強度極短パルスレーザーによるイオンビーム生成(22pTJ 領域2,ビーム物理領域合同(レーザープラズマ加速・高エネルギー密度プラズマ物理),ビーム物理領域)
- 21aXB-7 フェムト秒レーザーによる金属表面周期構造の自己形成機構(21aXB 表面界面ダイナミクス,表面ナノ構造量子物性,領域9(表面・界面,結晶成長))
- 30pWJ-9 偏光X線分光法による超短パルスレーザープラズマ中の高速電子の速度分布診断(プラズマ分光・原子過程(領域内横断))(領域2)
- 21aYB-11 超短パルスレーザーによるエネルギー輸送に関する X 線分光学的研究
- 29aZL-5 高強度レーザープラズマ放射 X 線分光計測によるエネルギー輸送の研究
- 29aYJ-2 超強度レーザープラズマ放射 X 線分光観測とその解析
- 29pB02 X線分光法を用いた高速電子によるプラズマ加熱の診断(慣性核融合)
- 30pYP-3 高速点火核融合 : 部分電離イオンからのKα線群を用いたエネルギー付与の診断
- 30pYP-2 高速点火核融合 : PWレーザー
- 20aRA-9 X線分光法による超短パルスレーザー生成プラズマ中におけるエネルギー付与の計測
- 19pTA-8 部分電離Kα線群X線分光計測を用いた超短パルスレーザー生成プラズマ中のエネルギー付与診断
- 19aRA-13 ペタワットレーザーの完成と高速点火研究
- 2p-K-3 激光XII号2ω光によるアブレーティブ圧縮
- 23aQJ-7 レーザー加速sub-MeV電子ビームのフェムト秒パルス圧縮(23aQJ プラズマ科学(高エネルギー密度プラズマ・プラズマ応用),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 23aQJ-9 高強度短パルスレーザーと薄膜との相互作用による生成放射電子線特性(23aQJ プラズマ科学(高エネルギー密度プラズマ・プラズマ応用),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- テーブルトップ超短パルス高強度レーザー生成高エネルギープロトン特性
- 31p-YG-2 高速点火へのアプローチ
- 高強電場下でのC_ダイナミックス
- 2a-TG-7 X線核融合I : 輻射伝播に関する日独共同実験の成果
- 17pRA-4 短パルス高強度レーザーを用いた高エネルギーイオン生成
- 2p-K-11 激光XII号2ω光によるキャビティ構造ターゲット中での非線形Brillouin散乱
- 3a-F-5 激光XII号ガラスレーザーによる爆縮核融合実験 : ダブルシェルターゲット爆縮
- 3a-F-4 激光XII号ガラスレーザーによる爆縮核融合実験 : X線輻射駆動型爆縮
- 3a-F-3 激光XII号グラスレーザーによる爆縮核融合実験 : プラズマキャノンボールターゲット爆縮
- 3a-F-2 激光XII号ガラスレーザーによる爆縮核融合実験 : アブレーティブ圧縮
- 27p-B-3 直接照射爆縮核融合におけるレーザー吸収分布 : ビーム数と集光条件の依存性
- 1a-J-12 Radiation Driven Compression II : Theoretical Study
- 1a-J-11 Radiation Driven Compression I : Experiments on ablation, energy deposition and preheating
- 4p-K-11 輻射駆動爆縮 IV : 輻射エネルギー輸送
- 4p-K-10 輻射駆動型爆縮III : クリーンキャビティーによる輻射の閉じ込め
- 4p-K-9 輻射駆動爆縮II : キャビティー輻射スケーリング
- 27pA38P 高強度短パルスレーザーと低密度フォームを用いた高エネルギーイオン発生(トカマク、加熱、電源・マグネット超伝導技術、炉設計)
- 21aYA-8 高強度短パルスレーザー照射低密度フォーム中でのイオン発生
- 29pB17P 高速点火核融合実験用PWレーザー装置(ヘリカル2/慣性核融合/新概念)
- TWチタンサファイアレーザー装置T^6とその応用 III. Eu^の高効率二光子還元
- 1a-J-9 ガラスレーザー激光IV号による1.05μm及び0.53μm光照射ペレットの縛縮一様性
- レーザー光電離を利用したC_の対称型電荷移行断面積の測定
- 2a-TG-13 X線核融合VII : Alプラズマ中におけるX線輻射輸送
- 1p-Y-7 激光IV号グリーンヒームによる爆縮の一様性
- 2p-NZ-8 低密度フォームアブレーターペレットの爆縮
- フェムト秒レーザー生成プラズマからの高速イオンエネルギースペクトル
- 10-fsカーレンズモード同期チタンサファイアレーザー -市販標準光学部品のみでの試作-
- 4a-ZG-10 金属原子の対称型電荷移行衝突断面積の測定
- 26pWX-2 金属のフェムト秒レーザーナノアブレーション機構 : イオン放射角度分布測定(26pWX 微粒子・ナノ構造,領域9(表面・界面,結晶成長))
- 4p-RD-12 ガラスレーザー激光XI号による核融合実験
- 3a-T-7 X線駆動爆縮核融合III : コアパラメータ
- 26pWX-1 フェムト秒レーザー照射による金属表面周期構造自己形成機構(26pWX 微粒子・ナノ構造,領域9(表面・界面,結晶成長))
- レーザー光電離ビーム直交法による第四周期元素の対称型電荷移行断面積の測定
- レーザー装置の基礎III -超短パルス超高強度レーザー-
- TW Tiサファイアレーザーシステム
- 超短パルス高輝度レーザー装置T^6の開発
- 回折格子型パルス伸延器・圧縮器を用いたCPAレーザーシステムの2次, 3次位相分散の補償
- 2p-K-7 激光XII号2ω光によるキャノンボール爆縮過程の解析
- フェルトム秒パルスを用いたEu^の高効率二光子還元
- 31a-YK-7 金属元素の対称型電荷移行断面積I
- パルスレーザー生成イオン源を用いた直交ビーム装置による金属元素電荷移行断面積の測定
- 4p-RD-10 激光XII号ガラスレーザー装置の動作特性
- 短パルス高輝度チタンサファイアレーザー装置T^6
- 28aGAB-12 超高強度レーザーパルスの高コントラスト化を目的としたプラズマミラーの最適化(28aGAB ビーム物理領域,領域2合同レーザー加速,領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 28aGAB-13 金属を局所的に蒸着したポリエチレン薄膜を用いたレーザーによる高エネルギー陽子線発生(28aGAB ビーム物理領域,領域2合同レーザー加速,領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 28aGAB-13 金属を局所的に蒸着したポリエチレン薄膜を用いたレーザーによる高エネルギー陽子線発生(28aGAB ビーム物理領域,領域2合同 レーザー加速,ビーム物理領域)
- 28aGAB-12 超高強度レーザーパルスの高コントラスト化を目的としたプラズマミラーの最適化(28aGAB ビーム物理領域,領域2合同 レーザー加速,ビーム物理領域)
- TWチタンサファイアレーザー装置T^6とその応用 II. フェムト秒現象測定法としての縮退四光波混合
- TWチタンサファイアレーザー装置T^6とその応用 I. 改良型前置増幅器と装置構成
- 30p-YA-1 Gdの対称型電荷移行断面積IV
- 28a-YR-6 Gdの対称型電荷移行断面積 III
- 3a-L-5 Gdの対称型電荷移行断面積II
- 30p-F-7 Gdの対称型電荷移行断面積
- 13a-DB-13 電荷移行断面積測定用直交ビーム衝突装置
- 27p-ZK-3 希土族元素の対称型電荷移行断面積の測定
- 27p-Q-10 Gd、Caの対称型電荷移行断面積の測定
- 27p-Q-9 共鳴電荷移行断面積の簡易公式
- 28a-YB-6 超短パルスレーザーによるイオン加速
- 2p-NZ-14 Milti Species Ion Energy Distribution of Laser Produced Plasma
- 02aA16P 偏光X線分光による超短パルスレーザー生成高速電子の非等方性の診断(トカマクII、慣性)
- 25pCC-6 周期ナノ構造形成の粒子シミュレーション(25pCC 表面ナノ構造量子物性,領域9(表面・界面,結晶成長))
- 27pGB-1 短パルスレーザープラズマのRF位相直接入射によるイオン源の開発(27pGB 超高強度レーザー・レーザープラズマ加速・THz発生,ビーム物理領域)
- 25pCC-4 金属のフェムト秒レーザーナノアブレーション機構 : ターゲット表面状態による放出イオン特性変化(25pCC 表面ナノ構造量子物性,領域9(表面・界面,結晶成長))
- 20pFF-6 フェムト秒レーザーによる周期ナノ構造形成の粒子シミュレーション(20pFF 表面ナノ構造量子物性,領域9(表面・界面,結晶成長)
- 18pFJ-12 フェムト秒電子ビームによるレーザープラズマ相互作用の観測 : ワイヤーターゲットを伝播する強電場(18pFJ プラズマ科学(ビーム・高強度レーザー),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 20pFF-5 金属のフェムト秒レーザーナノアブレーション機構 : 表面ナノ粒子の粒径分布と放出イオンエネルギー分布(20pFF 表面ナノ構造量子物性,領域9(表面・界面,結晶成長)
- 20pFF-4 フェムト秒レーザーアブレーションによる金属表面ナノ構造形成の機構解明(20pFF 表面ナノ構造量子物性,領域9(表面・界面,結晶成長)
- 18pFJ-11 高強度短パルスレーザー照射金属ワイヤーによる高速電子の1メートル誘導(18pFJ プラズマ科学(ビーム・高強度レーザー),領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 26aBC-13 高強度短パルスレーザープラズマからのTHz波放射(26aBC ビーム物理領域,領域2合同 レーザープラズマ加速・レーザーと物質の相互作用,領域2(プラズマ基礎・プラズマ科学・核融合プラズマ・プラズマ宇宙物理))
- 26aBC-13 高強度短パルスレーザープラズマからのTHz波放射(26aBC ビーム物理領域,領域2合同 レーザープラズマ加速・レーザーと物質の相互作用,ビーム物理領域)