Split-Step Wavelet Collocation Method for Nonlinear Optical Pulse Propagation(<特集>Special Issue on Signals, Systems and Electronics Technology)
スポンサーリンク
概要
- 論文の詳細を見る
With the emerging technology of photonic networks, careful design becomes necessary to make most of the already installed fibre capacity. Appropriate numerical tools are readily available. Usually, these are based on the split-step Fourier method (SSFM), employing the fast Fourier transform (FFT). With N discretization points, the complexity of the SSFM is O(Nlog_2N). For real-world wavelength division multiplexing (WDM) systems, the simulation time can be of the order of days, so any speed improvement would be most welcome. We show that the SSFM is a special case of the so-called collocation method with harmonic basis functions. However, for modelling nonlinear optical waveguides, various other basis function systems offer significant advantages. For calculating the propagation of single soliton-like impulses, a problem-adapted Gauss-Hermite basis leads to a strongly reduced computation time compared to the SSFM. Further, using a basis function system constructed from a scaling function, which generates a compactly supported wavelet, we developed a new and flexible split-step wavelet collocation method (SSWCM). This technique is independent of the propagating impulse shapes, and provides a complexity of the order O(N) for a fixed accuracy. For a typical modelling situation with up to 64 WDM channels, the SSWCM leads to significantly shorter computation times than the standard SSFM.
- 2002-03-01
著者
-
KREMP Tristan
High-Frequency and Quantum Electronics Laboratory, University of Karlsruhe
-
KILLI Alexander
High-Frequency and Quantum Electronics Laboratory, University of Karlsruhe
-
RIEDER Andreas
Centre for Scientific Computing and Mathematical Modeling, University of Karlsruhe
-
FREUDE Wolfgang
High-Frequency and Quantum Electronics Laboratory, University of Karlsruhe
-
Kremp Tristan
High-frequency And Quantum Electronics Laboratory University Of Karlsruhe
-
Rieder Andreas
Centre For Scientific Computing And Mathematical Modeling University Of Karlsruhe
-
Freude Wolfgang
High-frequency And Quantum Electronics Laboratory University Of Karlsruhe
-
Killi Alexander
High-frequency And Quantum Electronics Laboratory University Of Karlsruhe