Power-Properties of Codes
スポンサーリンク
概要
- 論文の詳細を見る
We consider the following three statements for a code L. (P1) For every n ≥ 2, both w^n ⋴ L^n and w^<n+1> ⋴ L^<n+1>imply w ⋴ L. (P2) For every n ≥ 2, if w^n ⋴ L^n, then w ⋴ L. (P3)For every m, k ≥ 2 with m ≤ k,w^n ⋴ L^m implies w ⋴ L. First we show that for every code L, P1 holds. Next we show that for every infix code L, P2 holds, and that a code L is an infix code iff P2 holds and L is a weakly infix code. Last we show that for every strongly infix code L, P3 holds, and that a code L is a strongly infix code if P3 holds and L is a hyper infix code.
- 社団法人電子情報通信学会の論文
- 2002-03-01
著者
-
Moriya Tetsuo
Department Of Electrical Engineering Faculty Of Engineering Kokushikan University
-
Moriya Tetsuo
Department Of Applied Physics Faculty Of Engineering University Of Tokyo
関連論文
- Syntactic Congruences of Codes
- A Class by Principal Congruence of a Syntactically Embedded Language(Automata and Formal Language Theory)
- A note on d-primitive words, cyclic-square-free words, and disjunctive languages(Algorithmic problems in algebra, languages and computation systems)
- A Note on Parses of Codes(Theory of Automata, Formal Language Theory)
- Power-Properties of Codes
- A Note on Parses of Codes
- Role of Field-Induced-Surface Current in the Landau Diamagnetism
- A Note on non-overlapping words