Design of Recursive Wiener Smoother Given Covariance Information
スポンサーリンク
概要
- 論文の詳細を見る
This paper discusses the fixed-point smoothing and filtering problems given lumped covariance function of a scalar signal process observed with additive white Gaussian noise. The recursive Wiener smoother and filter are derived by applying an invariant imbedding method to the Volterra-type integral equation of the second kind in linear least-squares estimation problems. The resultant estimators in Theorem 2 require the information of the crossvariance function of the state variable with the observed value, the system matrix, the observation vector, the variance of the observation noise and the observed value. Here, it is assumed that the signal process is generated by the state-space model. The spectral factorization problem is also considered in Sects. 1 and 2.
- 一般社団法人電子情報通信学会の論文
- 1996-06-25
著者
関連論文
- Recursive Estimation Algorithm Based on Covariances for Uncertainly Observed Signals Correlated with Noise
- Filtering in Generalized Signal-Dependent Noise Model Using Covariance Information
- Fixed-Lag Smoothing Algorithm under Non-independent Uncertainty(Digital Signal Processing)
- Fixed-Point, Fixed-Interval and Fixed-Lag Smoothing Algorithms from Uncertain Observations Based on Covariances(Digital Signal Processing)
- Estimation Algorithm from Delayed Measurements with Correlation between Signal and Noise Using Covariance Information(Systems and Control)
- Fixed-Interval Smoothing from Uncertain Observations with White Plus Coloured Noises Using Covariance Information(Digital Signal Processing)
- Second-Order Polynomial Estimators from Non-independent Uncertain Observations Using Covariance Information
- Recursive Estimation Technique of Signal from Output Measurement Data in Linear Discrete-Time Systems
- Estimation Technique Using Covariance Data in Linear Continuous Stochastic Systems
- Optimal Filtering Algorithm Using Covariance Information In Linear Continuous Distributed Parameter Systems
- Design of Linear Discrete-Time Stochastic Estimators Using Covariance Information in Krein Spaces
- Design of Recursive Wiener Smoother Given Covariance Information
- Design of Estimators Using Covarianee Information in Discrete-Time Stochastic Systems with Nonlinear Observation Mechanism