The Optimum Approximate Restoration of Multi-Dimensional Signals Using the Prescribed Analysis or Synthesis Filter Bank
スポンサーリンク
概要
- 論文の詳細を見る
We present a systematic theory for the optimum sub-band interpolation using a given analysis or synthesis filter bank with the prescribed coefficient bit length. Recently, similar treatment is presented by Kida and quantization for decimated sample values is contained partly in this discussion. However, in his previous treatment, measures of error are defined abstractly and no discussion for concrete functional forms of measures of error is provided. Further, in the previous discussion, quantization is neglected in the proof of the reciprocal theorem. In this paper, linear quantization for decimated sample values is included also and, under some conditions, we will present concrete functional forms of worst case measures of error or a pair of upper bound and lower limit of those measures of error in the variable domain. These measures of error are defined in R^n, although the measure of error in the literature is more general but must be defined in each limited block separately. Based on a concrete expression of measure of error, we will present similar reciprocal theorem for a filter bank nevertheless the quantization for the decimated sample values is contained in the discussion. Examples are given for QMF banks and cosine-modulated FIR filter banks. It will be shown that favorable linear phase FIR filter banks are easily realized from cosine-modulated FIR filter banks by using reciprocal relation and new transformation called cosine-sine modulation in the design of filter banks.
- 社団法人電子情報通信学会の論文
- 1996-06-25
著者
-
Zhou Yi
Interdisciplinary Graduate School Of Science And Engineering Tokyo Institute Of Tokyo
-
Kida Takuro
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
-
Kida Takuro
Interdisciplinary Graduate School Of Science And Engineering Tokyo Institute Of Tokyo
-
Kida Takuro
Interdisciplinary Graduate School Of Science And Engineering Tokyo Institute Of Technology
関連論文
- Interpolatory Estimation of Multi-Dimensional Orthogonal Expansions with Stochastic Coefficients
- The Optimum Approximate Restoration of Multi-Dimensional Signals Using the Prescribed Analysis or Synthesis Filter Bank
- On Restoration and Approximation of Multi-Dimensional Signals Using Sample Values of Transformed Signals (Special Section on Surveys of Researches in CAS Fields in the Last Two Decadeses, II(
- The Optimum Approximation of Multi-Dimensional Signals Based on the Quantized Sample Values of Transformed Signals