Verification of Multi-Class Recognition Decision : A Classification Approach(Spoken Language Systems, <Special Section>Corpus-Based Speech Technologies)
スポンサーリンク
概要
- 論文の詳細を見る
We investigate strategies to improve the utterance verification performance using a 2-class pattern classification approach, including: utilizing N-best candidate scores, modifying segmentation boundaries, applying background and out-of-vocabulary filler models, incorporating contexts, and minimizing verification errors via discriminative training. A connected-digit database recorded in a noisy, moving car with a hands-free microphone mounted on the sun-visor is used to evaluate the verification performance. The equal error rate (EER) of word verification is employed as the sole performance measure. All factors and their effects on the verification performance are presented in detail. The EER is reduced from 29%, using the standard likelihood ratio test, down to 21.4%, when all features are properly integrated.
- 社団法人電子情報通信学会の論文
- 2005-03-01
著者
-
Soong Frank
Atr Spoken Language Translation Laboratories
-
MATSUI Tomoko
ATR Spoken Language Translation Laboratories
-
JUANG Biing
Georgia Institute of Technology
-
Matsui Tomoko
Atr Spoken Language Translation Communication Laboratories
-
Matsui Tomoko
Atr Spoken Language Translation Laboratories:institute Of Statistical Mathematics
関連論文
- 連続音声認識候補受理/リジェクションのためのワードスポッティング仮説検証手法(第5回音声言語シンポジウム : システム・信頼度)
- 連続音声認識候補受理/リジェクションのためのワードスポッティング仮説検証手法(第5回音声言語シンポジウム : システム・信頼度)
- 一般化事後確率を用いた異なるレベルの大語彙連続音声認識出力の検証
- 一般化事後確率を用いた異なるレベルの大語彙連続音声認識出力の検証
- 連続音声認識候補受理/リジェクションのためのワードスポッティング仮説検証手法
- 一般化事後確率を用いた異なるレベルの大語彙連続音声認識出力の検証(大語彙音声認識)(第6回音声言語シンポジウム)
- 一般化事後確率を用いた異なるレベルの大語彙連続音声認識出力の検証(大語彙音声認識)(第6回音声言語シンポジウム)
- Verification of Multi-Class Recognition Decision : A Classification Approach(Spoken Language Systems, Corpus-Based Speech Technologies)
- Noise and Channel Distortion Robust ASR System for DARPA SPINE2 Task (Special Issue on Speech Information Processing)
- A Study on Acoustic Modeling of Pauses for Recognizing Noisy Conversational Speech (Special Issue on Speech Information Processing)
- IMPROVING ACCURACY IN PARAMETER ESTIMATION IN AN EXTENDED KALMAN PARTICLE FILTERS FOR NOISY SPEECH RECOGNITION