Use of a Monte Carlo Wiring Yield Simulator to Optimize Design of Random Logic Circuits for Yield Enhancement
スポンサーリンク
概要
- 論文の詳細を見る
There is general trend toward larger chip size and tighter layout due to customer requests of loading more and more functions on single chip. This trend makes yield difficult to be maintained high enough, since larger amount of defects are distributed on such large and tight-ruled chips. To overcome such a situation, RADLYS (RAnDom Logic Yield Simulator) and DD-TEG (Defect Density TEG) have been developed. DD-TEG extracts defect size distribution and its amount automatically, while RADLYS simulates defects on any layout and outputs yield based on the extracted defect size distribution. Critical layout from yield point of view can be found in this procedure. DD-TEG and RADLYS are used as a set of parameter extraction and simulation of the SPICE. In this paper, we introduce these tools and showed two application results. The predicted yield showed a good agreement with the actual yield in the first application (Optical Device A). Critical layout at the Local I/O portion was found in the second application (Random Logic portion of Memory Device B) and the layout was changed based on the RADLYS results.
- 社団法人電子情報通信学会の論文
- 1995-07-25
著者
-
Boku Katsushi
Texas Instruments Japan Limited Design Automation Division
-
Komatsuzaki Takao
Ulsi Technology Development Amp Productization Center
-
Fukuhara Hideyuki
Texas Instruments, Japan Limited, Advanced Product Engineering
-
Miyai Yoichi
Design Center
-
Fukuhara Hideyuki
Texas Instruments Japan Limited Advanced Product Engineering
-
Boku Katsushi
Texas Instruments Japan Limited Advanced Product Engineering/ulsi Technology Development Amp Product
-
Komatsuzaki Takao
Texas Instruments, Japan Limited, Design Automation Division/Design Center
-
Miyai Yoichi
Texas Instruments, Japan Limited, Advanced Product Engineering/ULSI Technology Development amp Produ
-
Komatsuzaki Takao
Texas Instruments Japan Limited Design Automation Division/design Center
-
Miyai Yoichi
Texas Instruments Japan Limited Advanced Product Engineering/ulsi Technology Development Amp Product