3-D Object Recognition Using Hopfield-Style Neural Networks
スポンサーリンク
概要
- 論文の詳細を見る
In this paper we propose a new algorithm for recognizing 3-D objects from 2-D images. The algorithm takes the multiple view approach in which each 3-D object is modeled by a collection of 2-D projections from various viewing angles where each 2-D projection is called an object model. To select the candidates for the object model that has the best match with the input image, the proposed algorithm computes the surface matching score between the input image and each object model by using Hopfield nets. In addition, the algorithm gives the final matching error between the input image and each candidate model by the error of the pose-transform matrix proposed by Hong et al. [2] and selects an object model with the smallest matching error as the best matched model. The proposed algorithm can be viewed as a combination of the algorithm of Lin et al. [4] and the algorithm of Hong et al. [2]. However, the proposed algorithm is not a simple combination of these algorithms. While the algorithm of Lin et al. computes the surface matching score and the vertex matching score between the input image and each object model to select the candidates for the best matched model, the proposed algorithm computes only the surface matching score. In addition, to enhance the accuracy of the surface matching score, the proposed algorithm uses two Hopfield nets. The first Hopfield net, which is the same as that used in the algorithm of Lin et al. [4], performs a coarse matching between surfaces of an input image and surfaces of an object model. The second Hopfield net, which is the one newly proposed in this paper, establishes the surface correspondences using the compatibility measures between adjacent surface-pairs of the input image and the object model. The results of the experiments showed that the surface matching score obtained by the Hopfield net proposed in this paper is much more useful for the selection of the candidates for the best matched model than both the surface matching score obtained by the first Hopfield net of Lin et al. and the vertex matching score obtained by the second Hopfield net of Lin et al. and, as the result, the object recognition algorithm of this paper can perform much more reliable object recognition than that obtained by simply combining the algorithm of Lin et al. and the algorithm of Hong et al.
- 社団法人電子情報通信学会の論文
- 1994-08-25
著者
-
KAWAGUCHI Tsuyoshi
Department of Physics, Faculty of Science, Shinshu University
-
Kawaguchi Tsuyoshi
Department Of Computer Science And Intelligent Systems Oita University
-
Setoguchi Tatsuya
Systems Integration Divisions, TOSHIBA CORPORATION
-
Setoguchi Tatsuya
Systems Integration Divisions Toshiba Corporation
関連論文
- Impurity Mode in Microstrip Line Photonic Crystal in Millimeter Wave Region
- 3-D Object Recognition Using Hopfield-Style Neural Networks