A Note on the Fix-Free Code Property (Special Section on Information Theory and Its Applications)
スポンサーリンク
概要
- 論文の詳細を見る
We study some sufficient conditions of codeword lengths for the existence of a fix-free code. Ahlswede et al. proposed the 3/4 conjecture that Σ_<i=1>^^na^<-l_i>lt__-3/4 implies the existence of a fix-free code with lengths l_i when a = 2 i.e. the alphabet is binary. We propose a more general conjecture, and prove that the upper bound of our conjecture is not greater than 3/4 for any finite alphabet. Moreover, we show that for any a >__- 2 our conjecture is true if codeword lengths l_1,l_2,... consist of only two kinds of lengths.
- 一般社団法人電子情報通信学会の論文
- 1999-10-25
著者
-
Kobayashi Kingo
Graduate School Of Information Systems The University Of Electro-communications
-
HARADA Kazuyoshi
Graduate School of Information Systems, the University of Electro-Communications
関連論文
- Reversible Distribution Converter with Finite Precision Arithmetic
- 中央大学法学部でのPerlとJavaを用いたプログラミング授業 -法律以外の多様な知的分野へ目を向けさせる機会の一つとして-
- A Note on the Fix-Free Code Property (Special Section on Information Theory and Its Applications)
- James Joyce『A Portrait of the Artist as a Young Man』における物理学講義 : Platinoidと発明者F. W. Martinoに関する考察