つるまきばねを伝わる弾性波について
スポンサーリンク
概要
- 論文の詳細を見る
Helical springs have vast applications in mechanical and electromechanical systems, e. g. shock absorbing and shock isolating constructions, mechanical filters and delay lines. It is, therefore, of fundamental importance to understand the wave propagation along a helical spring. Yoshimura and Murata [5] investigated the propagation characteristics on an infinite helical spring, which was analitically treated but with the approximation of zero helix angle, though they mentioned the effect of the helix angle. The assumption of zero helix angle decouples the longitudinal motion of the spring from the torsional motion with respect to the axis of the coil. The purpose of the present paper is to investigate the wave propagation along an infinite helical spring with a helix angle, and to see its influence on the phase velocities and the displacement characteristics based on the complete set of the equations. The characteristic equation developed in terms of the frequency parameter shows six possible waves. The propagation velocities at different frequency parameters are numerically computed for the helix angle α=0゜, 5゜ and 10゜ with the ratio of the coil radius to the rod radius R_r=10. The dispersion curves are shown in Figs. 2(α=0゜), 3(α=5゜) and 4(α=10゜). The relative displacements B, V^- and W^- are also shown in Tables 1(α=0. 5゜), 2(α=5゜) and 3(α=10゜). Small value of α(=0. 5) is chosen for this case, instead of α=0, because V^- and W^- are separated or uncoupled when α is zero. The relative displacements indicate the nature of the vibration and the degree of the coupling. Refering to [6] we may calculate from the static deformation, the normalized propagation velocities of the longitudinal and the torsional motion at zero frequency, that is, C_<pt>=0. 043 and C_<pt>=0. 05 for the zero helix angle when R_r=10. They are indicated in Fig. 2, and fairly meet the two higher velocities. From the relative displacements we find that these two velocities in the lower frequency range correspond to the torsional and the longitudinal motion of the spring. However this distinction of torsional and longitudinal nature is completely lost at the frequency parameter √<K>=0. 342 and √<K>=0. 308, where the half wavelength equals to the circumference of the coil. This is consistent with the fact that Kagawa's result [6] for finite springs showed no transmission beyond these frequencies. Since Kagawa was paying attention only to the torsional and the longitudinal waves, the absence of these waves in a distinct manner must be interpreted as non-transmission in his case. When α is not zero, the above two kinds of modes are not independent at all but are coupled. As seen from Fig. 3 and 4, the higher two branches of velocities in the lower frequency range are shifted from the static ones. when the helix angle is small (α=0. 5゜) as in Table 1 (K=0. 03), V^-/W^- =-4. 81×10^<-2> for C_p=4. 75×10^<-2> while V^-/W^- =26. 1 for C_p=4. 121×10^<-2>. The first case is predominently torsional and the second case predominently longitudinal where the coupling between both modes is small. For α=5゜ in Table 2, however, we can not say that the vibration is predominently torsional for the first case. This tendency is more pronounced for larger α. Except higher two branches of velocity in the lower frequency range discussed above, most modes are involves with the bending of the rod coupling with the torsion. Some modes in the figures are inclined at about 45゜degrees throughout the frequency range. That is, the propagation velocities are almost proportional to the frequency. There are also some other modes whose velocities are not much effected by frequency. It is seen from the figures and the tables that these two type of modes are coupled, at a certain frequency parameter around √<K>=1.
- 社団法人日本音響学会の論文
- 1970-12-10
著者
-
加川 幸雄
実行委員長:岡山大学
-
加川 幸雄
富山大学工学部電子情報工学科
-
加川 幸雄
英国サザンプトン大学音響振動研究所
-
加川 幸雄
岡山大学
-
K.K. プジャラ
英国サザンプトン大学音響振動研究所
関連論文
- 高周波超音波洗浄槽の有限要素シミュレーション
- 高周波超音波洗浄ノズルの有限要素シミュレーション
- 高周波超音波洗浄槽の有限要素シミュレーション
- IIR型ニューラルネットワークの磁極形状最適化への応用
- デジタル時代のホイヘンス -音場解析のためのTLMモデルとその応用-
- 外挿法を適用した電磁力計算の精度と誤差評価-2次要素を用いた場合-
- ハイブリッド形無限要素による電磁波開領域問題の数値解析と遮へい効果への応用--軸対称場
- 電気系と機械系が結合している振動系への有限素子法の応用 : 電わい変換器を貼付した音片振動子の解析
- 二層円筒殻の粘弾性制動について
- 音声信号からの声道形状推定における音源波の影響除去とその効果
- EHD流動を利用した絶縁油用小型ポンプ
- 電界 1-I-5 EHD流動の数値シミュレーション--実験との比較による注入イオン密度の推定 (日本シミュレーション学会 第20回計算電気・電子工学シンポジウム(1999年11月25日,26日)) -- (第1日目 平成11年11月25日(木))
- 電気・機械/電気・音響変換器の数値シミュレ-ション-2-
- 電気・機械/電気・音響変換器の数値シミュレ-ション-1-
- 平成8年度秋季研究発表会
- 平成元年度秋季研究発表会
- 圧力・温度・湿度を周波数変化で測定するための振動子
- 有限素子法による電気機械フィルタの解析と設計
- つるまきばねを伝わる弾性波について
- 英国サザンプトン大学音響振動研究所
- 浮床用マットの経時変化による衝撃音しゃ断への影響
- ピッチの小さいつるまきばねの動的特性
- サンドイッチ片持はりの横振動の粘弾性制動
- バルクハウゼン効果による欠陥検出