地球内部の熱エネルギー収支
スポンサーリンク
概要
- 論文の詳細を見る
The heat energy produced and exhausted during the formation and development of the earth is considered quantitatively. It includes chemical reactions, energy released during the accretion and core formation of the earth, radioactive energy, thermal convection and heat conduction in the mantle, and volcanic and geothermal activities. When the earth is made of the accumulation of Type I carbonaceous chondrite, the heat energy required to form the molten Fe-Si core is calculated to be 2.23×10^<38> ergs. This large amount of energy can be provided by release of the gravitational energy during the accretion, if the accretion time is less than 1×10^4 years. In this case one difficulty is degassing of CO_2 or CO produced by the reduction reactions of iron and silicon oxides. The completion of the reduction before the accretion removes this difficulty. The energy that the earth gains during its evolution is I_<GE>, heat energy converted from the gravitational energy by the rapid growth of the earth ; R_E, radioactive energy by the long-lived radioactive elements contained ; and C_E, heat energy converted from the gravitational energy by the core formation. I_<GE> is calculated to be 2.5×10^<38> ergs for the accretion time of 1×10^4 years, R_E 0.93×10^<38> ergs for the chondritic mantle model, and C_E 1.5×10^<38> ergs. The energy lost from the earth's interior during 4.5×10^9 years is composed of E_A, energy released by volcanic activity ; E_C, energy carried to the earth's surface by mantle convection ; L_E, heat loss by heat conduction ; and E_W, energy released by hot springs. E_A, L_E, E_C, and E_W are calculated to be 0.003×10^<38> ergs, 0.8×10^<38> ergs, 2.1×10^<38> ergs, and 0.001×10^<38> ergs, respectively. The difference between the energy gained and lost, 2.0×10^<38> ergs, represents the energy preserved now in the earth's interior, This raises the mean temperature within the earth by about 2300℃. The energy required to melt the whole earth is approximately 2.9×10^<38> ergs. The energy balance calculated above is consistent with the solid earth model. It is emphasized that the energy released during the accretion and core formation of the earth is more effective for the heating of the earth's interior than that by the long-lived radioactive elements contained, and that the release of heat by mantle convection is most important for the cooling.
- 特定非営利活動法人日本火山学会の論文
- 1973-08-01
著者
-
白木 敬一
名古屋大学理学部地球科学教室
-
入山 淳
中部工業大学・基礎教育
-
入山 淳
中部工大・工
-
伊藤 久志
中部工業大学工学部自然科学系列
-
水谷 順一
中部工業大学工学部自然科学系列
-
入山 淳
中部工業大学工学部自然科学系列
関連論文
- マリアナ島弧グアム島玄武岩のクロム・スピネル
- 父島のボーニナイトと関連岩 : 火山および火山岩
- 54. 月内部の熱的状態(日本火山学会 1971 年度秋季大会講演要旨)
- 焼岳・宝水地域などにおける地温探査(日本火山学会 1982 年春季大会講演要旨)
- 宇宙線照射年代からみた月表層部の攪拌過程
- 1. 月面物質の宇宙線年代からみた表層部の物質移動(日本火山学会1976年度秋季大会)
- 月表層部の撹拌と月面物質の宇宙線照射年代(フォ-ラム)
- 52. 地球内部のエネルギー・バランス(日本火山学会 1972 年度春季大会講演要旨)
- 月の石の年代からみた月の山と海の成因
- 34. 焼岳・カルカヤ地区の地下熱構造 (I)(日本火山学会 1979 年春季大会講演要旨)
- 地球内部の熱エネルギー収支
- 焼岳カルカヤ, 宝地熱地域の地下熱構造(日本火山学会 1981 年春季大会講演要旨)
- 焼岳火山の3次元熱的構造 : 日本火山学会1980年度春季大会
- 小笠原諸島聟島の含単斜エンスタタイト無人岩
- 41. 地球内部の冷却(日本火山学会 1972 年度秋季大会講演要旨)
- 無人岩再訪
- 月の石の年代からみた月の山と海の成因(2) : 日本火山学会1974年度春季大会
- Gardening Process of the Lunar Surface Region
- 75. カナダ東部の上部地殻の熱的構造(I)(日本火山学会1978年秋季大会)